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Chapter 1

Introduction

In this book we will be concerned with supervised learning, which is the problem
of learning input-output mappings from empirical data (the training dataset).
Depending on the characteristics of the output, this problem is known as either
regression, for continuous outputs, or classification, when outputs are discrete.

A well known example is the classification of images of handwritten digits. digit classification

The training set consists of small digitized images, together with a classification
from 0, . . . , 9, normally provided by a human. The goal is to learn a mapping
from image to classification label, which can then be used on new, unseen
images. Supervised learning is an attractive way to attempt to tackle this
problem, since it is not easy to specify accurately the characteristics of, say, the
handwritten digit 4.

An example of a regression problem can be found in robotics, where we wish robotic control

to learn the inverse dynamics of a robot arm. Here the task is to map from
the state of the arm (given by the positions, velocities and accelerations of the
joints) to the corresponding torques on the joints. Such a model can then be
used to compute the torques needed to move the arm along a given trajectory.
Another example would be in a chemical plant, where we might wish to predict
the yield as a function of process parameters such as temperature, pressure,
amount of catalyst etc.

In general we denote the input as x, and the output (or target) as y. The the dataset

input is usually represented as a vector x as there are in general many input
variables—in the handwritten digit recognition example one may have a 256-
dimensional input obtained from a raster scan of a 16 × 16 image, and in the
robot arm example there are three input measurements for each joint in the
arm. The target y may either be continuous (as in the regression case) or
discrete (as in the classification case). We have a dataset D of n observations,
D = {(xi, yi)|i = 1, . . . , n}.

Given this training data we wish to make predictions for new inputs x∗ training is inductive

that we have not seen in the training set. Thus it is clear that the problem
at hand is inductive; we need to move from the finite training data D to a
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function f that makes predictions for all possible input values. To do this we
must make assumptions about the characteristics of the underlying function,
as otherwise any function which is consistent with the training data would be
equally valid. A wide variety of methods have been proposed to deal with the
supervised learning problem; here we describe two common approaches. Thetwo approaches

first is to restrict the class of functions that we consider, for example by only
considering linear functions of the input. The second approach is (speaking
rather loosely) to give a prior probability to every possible function, where
higher probabilities are given to functions that we consider to be more likely, for
example because they are smoother than other functions.1 The first approach
has an obvious problem in that we have to decide upon the richness of the class
of functions considered; if we are using a model based on a certain class of
functions (e.g. linear functions) and the target function is not well modelled by
this class, then the predictions will be poor. One may be tempted to increase the
flexibility of the class of functions, but this runs into the danger of overfitting,
where we can obtain a good fit to the training data, but perform badly when
making test predictions.

The second approach appears to have a serious problem, in that surely
there are an uncountably infinite set of possible functions, and how are we
going to compute with this set in finite time? This is where the GaussianGaussian process

process comes to our rescue. A Gaussian process is a generalization of the
Gaussian probability distribution. Whereas a probability distribution describes
random variables which are scalars or vectors (for multivariate distributions),
a stochastic process governs the properties of functions. Leaving mathematical
sophistication aside, one can loosely think of a function as a very long vector,
each entry in the vector specifying the function value f(x) at a particular input
x. It turns out, that although this idea is a little näıve, it is surprisingly close
what we need. Indeed, the question of how we deal computationally with these
infinite dimensional objects has the most pleasant resolution imaginable: if you
ask only for the properties of the function at a finite number of points, then
inference in the Gaussian process will give you the same answer if you ignore the
infinitely many other points, as if you would have taken them all into account!
And these answers are consistent with answers to any other finite queries youconsistency

may have. One of the main attractions of the Gaussian process framework is
precisely that it unites a sophisticated and consistent view with computationaltractability

tractability.

It should come as no surprise that these ideas have been around for some
time, although they are perhaps not as well known as they might be. Indeed,
many models that are commonly employed in both machine learning and statis-
tics are in fact special cases of, or restricted kinds of Gaussian processes. In this
volume, we aim to give a systematic and unified treatment of the area, showing
connections to related models.

1These two approaches may be regarded as imposing a restriction bias and a preference
bias respectively; see e.g. Mitchell [1997].
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Figure 1.1: Panel (a) shows four samples drawn from the prior distribution. Panel
(b) shows the situation after two datapoints have been observed. The mean prediction
is shown as the solid line and four samples from the posterior are shown as dashed
lines. In both plots the shaded region denotes twice the standard deviation at each
input value x.

1.1 A Pictorial Introduction to Bayesian Mod-
elling

In this section we give graphical illustrations of how the second (Bayesian)
method works on some simple regression and classification examples.

We first consider a simple 1-d regression problem, mapping from an input regression

x to an output f(x). In Figure 1.1(a) we show a number of sample functions
drawn at random from the prior distribution over functions specified by a par- random functions

ticular Gaussian process which favours smooth functions. This prior is taken
to represent our prior beliefs over the kinds of functions we expect to observe,
before seeing any data. In the absence of knowledge to the contrary we have
assumed that the average value over the sample functions at each x is zero. mean function

Although the specific random functions drawn in Figure 1.1(a) do not have a
mean of zero, the mean of f(x) values for any fixed x would become zero, in-
dependent of x as we kept on drawing more functions. At any value of x we
can also characterize the variability of the sample functions by computing the pointwise variance

variance at that point. The shaded region denotes twice the pointwise standard
deviation; in this case we used a Gaussian process which specifies that the prior
variance does not depend on x.

Suppose that we are then given a dataset D = {(x1, y1), (x2, y2)} consist- functions that agree
with observationsing of two observations, and we wish now to only consider functions that pass

though these two data points exactly. (It is also possible to give higher pref-
erence to functions that merely pass “close” to the datapoints.) This situation
is illustrated in Figure 1.1(b). The dashed lines show sample functions which
are consistent with D, and the solid line depicts the mean value of such func-
tions. Notice how the uncertainty is reduced close to the observations. The
combination of the prior and the data leads to the posterior distribution over posterior over functions

functions.
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If more datapoints were added one would see the mean function adjust itself
to pass through these points, and that the posterior uncertainty would reduce
close to the observations. Notice, that since the Gaussian process is not a
parametric model, we do not have to worry about whether it is possible for thenon-parametric

model to fit the data (as would be the case if e.g. you tried a linear model on
strongly non-linear data). Even when a lot of observations have been added,
there may still be some flexibility left in the functions. One way to imagine the
reduction of flexibility in the distribution of functions as the data arrives is to
draw many random functions from the prior, and reject the ones which do not
agree with the observations. While this is a perfectly valid way to do inference,inference

it is impractical for most purposes—the exact analytical computations required
to quantify these properties will be detailed in the next chapter.

The specification of the prior is important, because it fixes the properties ofprior specification

the functions considered for inference. Above we briefly touched on the mean
and pointwise variance of the functions. However, other characteristics can also
be specified and manipulated. Note that the functions in Figure 1.1(a) are
smooth and stationary (informally, stationarity means that the functions look
similar at all x locations). These are properties which are induced by the co-
variance function of the Gaussian process; many other covariance functions arecovariance function

possible. Suppose, that for a particular application, we think that the functions
in Figure 1.1(a) vary too rapidly (i.e. that their characteristic length-scale is
too short). Slower variation is achieved by simply adjusting parameters of the
covariance function. The problem of learning in Gaussian processes is exactly
the problem of finding suitable properties for the covariance function. Note,
that this gives us a model of the data, and characteristics (such a smoothness,modelling and

interpreting characteristic length-scale, etc.) which we can interpret.

We now turn to the classification case, and consider the binary (or two-classification

class) classification problem. An example of this is classifying objects detected
in astronomical sky surveys into stars or galaxies. Our data has the label +1 for
stars and −1 for galaxies, and our task will be to predict π(x), the probability
that an example with input vector x is a star, using as inputs some features
that describe each object. Obviously π(x) should lie in the interval [0, 1]. A
Gaussian process prior over functions does not restrict the output to lie in this
interval, as can be seen from Figure 1.1(a). The approach that we shall adopt
is to squash the prior function f pointwise through a response function whichsquashing function

restricts the output to lie in [0, 1]. A common choice for this function is the
logistic function λ(z) = (1+ exp(−z))−1, illustrated in Figure 1.2(b). Thus the
prior over f induces a prior over probabilistic classifications π.

This set up is illustrated in Figure 1.2 for a 2-d input space. In panel
(a) we see a sample drawn from the prior over functions f which is squashed
through the logistic function (panel (b)). A dataset is shown in panel (c), where
the white and black circles denote classes +1 and −1 respectively. As in the
regression case the effect of the data is to downweight in the posterior those
functions that are incompatible with the data. A contour plot of the posterior
mean for π(x) is shown in panel (d). In this example we have chosen a short
characteristic length-scale for the process so that it can vary fairly rapidly; in
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Figure 1.2: Panel (a) shows a sample from prior distribution on f in a 2-d input
space. Panel (b) is a plot of the logistic function λ(z). Panel (c) shows the location
of the data points, where the open circles denote the class label +1, and closed circles
denote the class label −1. Panel (d) shows a contour plot of the mean predictive
probability as a function of x; the decision boundaries between the two classes are
shown by the thicker lines.

this case notice that all of the training points are correctly classified, including
the two “outliers” in the NE and SW corners. By choosing a different length-
scale we can change this behaviour, as illustrated in section 3.7.1.

1.2 Roadmap

The book has a natural split into two parts, with the chapters up to and includ-
ing chapter 5 covering core material, and the remaining chapters covering the
connections to other methods, fast approximations, and more specialized prop-
erties. Some sections are marked by an asterisk. These sections may be omitted
on a first reading, and are not pre-requisites for later (un-starred) material.
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Chapter 2 contains the definition of Gaussian processes, in particular for theregression

use in regression. It also discusses the computations needed to make predic-
tions for regression. Under the assumption of Gaussian observation noise the
computations needed to make predictions are tractable and are dominated by
the inversion of a n× n matrix. In a short experimental section, the Gaussian
process model is applied to a robotics task.

Chapter 3 considers the classification problem for both binary and multi-classification

class cases. The use of a non-linear response function means that exact compu-
tation of the predictions is no longer possible analytically. We discuss a number
of approximation schemes, include detailed algorithms for their implementation
and discuss some experimental comparisons.

As discussed above, the key factor that controls the properties of a Gaussiancovariance functions

process is the covariance function. Much of the work on machine learning so far,
has used a very limited set of covariance functions, possibly limiting the power
of the resulting models. In chapter 4 we discuss a number of valid covariance
functions and their properties and provide some guidelines on how to combine
covariance functions into new ones, tailored to specific needs.

Many covariance functions have adjustable parameters, such as the char-learning

acteristic length-scale and variance illustrated in Figure 1.1. Chapter 5 de-
scribes how such parameters can be inferred or learned from the data, based on
either Bayesian methods (using the marginal likelihood) or methods of cross-
validation. Explicit algorithms are provided for some schemes, and some simple
practical examples are demonstrated.

Gaussian process predictors are an example of a class of methods known asconnections

kernel machines; they are distinguished by the probabilistic viewpoint taken.
In chapter 6 we discuss other kernel machines such as support vector machines
(SVMs), splines, least-squares classifiers and relevance vector machines (RVMs),
and their relationships to Gaussian process prediction.

In chapter 7 we discuss a number of more theoretical issues relating totheory

Gaussian process methods including asymptotic analysis, average-case learning
curves and the PAC-Bayesian framework.

One issue with Gaussian process prediction methods is that their basic com-fast approximations

plexity is O(n3), due to the inversion of a n×n matrix. For large datasets this is
prohibitive (in both time and space) and so a number of approximation methods
have been developed, as described in chapter 8.

The main focus of the book is on the core supervised learning problems of
regression and classification. In chapter 9 we discuss some rather less standard
settings that GPs have been used in, and complete the main part of the book
with some conclusions.

Appendix A gives some mathematical background, while Appendix B deals
specifically with Gaussian Markov processes. Appendix C gives details of how
to access the data and programs that were used to make the some of the figures
and run the experiments described in the book.
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