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Chapter 2

Regression

Supervised learning can be divided into regression and classification problems.
Whereas the outputs for classification are discrete class labels, regression is
concerned with the prediction of continuous quantities. For example, in a fi-
nancial application, one may attempt to predict the price of a commodity as
a function of interest rates, currency exchange rates, availability and demand.
In this chapter we describe Gaussian process methods for regression problems;
classification problems are discussed in chapter 3.

There are several ways to interpret Gaussian process (GP) regression models.
One can think of a Gaussian process as defining a distribution over functions,
and inference taking place directly in the space of functions, the function-space two equivalent views

view. Although this view is appealing it may initially be difficult to grasp,
so we start our exposition in section 2.1 with the equivalent weight-space view
which may be more familiar and accessible to many, and continue in section
2.2 with the function-space view. Gaussian processes often have characteristics
that can be changed by setting certain parameters and in section 2.3 we discuss
how the properties change as these parameters are varied. The predictions
from a GP model take the form of a full predictive distribution; in section 2.4
we discuss how to combine a loss function with the predictive distributions
using decision theory to make point predictions in an optimal way. A practical
comparative example involving the learning of the inverse dynamics of a robot
arm is presented in section 2.5. We give some theoretical analysis of Gaussian
process regression in section 2.6, and discuss how to incorporate explicit basis
functions into the models in section 2.7. As much of the material in this chapter
can be considered fairly standard, we postpone most references to the historical
overview in section 2.8.

2.1 Weight-space View

The simple linear regression model where the output is a linear combination of
the inputs has been studied and used extensively. Its main virtues are simplic-
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ity of implementation and interpretability. Its main drawback is that it only
allows a limited flexibility; if the relationship between input and output can-
not reasonably be approximated by a linear function, the model will give poor
predictions.

In this section we first discuss the Bayesian treatment of the linear model.
We then make a simple enhancement to this class of models by projecting the
inputs into a high-dimensional feature space and applying the linear model
there. We show that in some feature spaces one can apply the “kernel trick” to
carry out computations implicitly in the high dimensional space; this last step
leads to computational savings when the dimensionality of the feature space is
large compared to the number of data points.

We have a training set D of n observations, D = {(xi, yi) | i = 1, . . . , n},training set

where x denotes an input vector (covariates) of dimension D and y denotes
a scalar output or target (dependent variable); the column vector inputs for
all n cases are aggregated in the D × n design matrix 1 X, and the targetsdesign matrix

are collected in the vector y, so we can write D = (X,y). In the regression
setting the targets are real values. We are interested in making inferences about
the relationship between inputs and targets, i.e. the conditional distribution of
the targets given the inputs (but we are not interested in modelling the input
distribution itself).

2.1.1 The Standard Linear Model

We will review the Bayesian analysis of the standard linear regression model
with Gaussian noise

f(x) = x>w, y = f(x) + ε, (2.1)

where x is the input vector, w is a vector of weights (parameters) of the linear
model, f is the function value and y is the observed target value. Often a biasbias, offset

weight or offset is included, but as this can be implemented by augmenting the
input vector x with an additional element whose value is always one, we do not
explicitly include it in our notation. We have assumed that the observed values
y differ from the function values f(x) by additive noise, and we will further
assume that this noise follows an independent, identically distributed Gaussian
distribution with zero mean and variance σ2

n

ε ∼ N (0, σ2
n). (2.2)

This noise assumption together with the model directly gives rise to the likeli-likelihood

hood, the probability density of the observations given the parameters, which is
1In statistics texts the design matrix is usually taken to be the transpose of our definition,

but our choice is deliberate and has the advantage that a data point is a standard (column)
vector.
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factored over cases in the training set (because of the independence assumption)
to give

p(y|X,w) =
n∏

i=1

p(yi|xi,w) =
n∏

i=1

1√
2πσn

exp
(
− (yi − x>i w)2

2σ2
n

)
=

1
(2πσ2

n)n/2
exp

(
− 1

2σ2
n

|y −X>w|2
)

= N (X>w, σ2
nI),

(2.3)

where |z| denotes the Euclidean length of vector z. In the Bayesian formalism
we need to specify a prior over the parameters, expressing our beliefs about the prior

parameters before we look at the observations. We put a zero mean Gaussian
prior with covariance matrix Σp on the weights

w ∼ N (0, Σp). (2.4)

The rôle and properties of this prior will be discussed in section 2.2; for now
we will continue the derivation with the prior as specified.

Inference in the Bayesian linear model is based on the posterior distribution posterior

over the weights, computed by Bayes’ rule, (see eq. (A.3))2

posterior =
likelihood× prior

marginal likelihood
, p(w|y, X) =

p(y|X,w)p(w)
p(y|X)

, (2.5)

where the normalizing constant, also known as the marginal likelihood (see page marginal likelihood

19), is independent of the weights and given by

p(y|X) =
∫
p(y|X,w)p(w) dw. (2.6)

The posterior in eq. (2.5) combines the likelihood and the prior, and captures
everything we know about the parameters. Writing only the terms from the
likelihood and prior which depend on the weights, and “completing the square”
we obtain

p(w|X,y) ∝ exp
(
− 1

2σ2
n

(y −X>w)>(y −X>w)
)
exp

(
− 1

2
w>Σ−1

p w
)

∝ exp
(
− 1

2
(w − w̄)>

( 1
σ2

n

XX> + Σ−1
p

)
(w − w̄)

)
, (2.7)

where w̄ = σ−2
n (σ−2

n XX> + Σ−1
p )−1Xy, and we recognize the form of the

posterior distribution as Gaussian with mean w̄ and covariance matrix A−1

p(w|X,y) ∼ N (w̄=
1
σ2

n

A−1Xy, A−1), (2.8)

where A = σ−2
n XX> + Σ−1

p . Notice that for this model (and indeed for any
Gaussian posterior) the mean of the posterior distribution p(w|y, X) is also
its mode, which is also called the maximum a posteriori (MAP) estimate of MAP estimate

2Often Bayes’ rule is stated as p(a|b) = p(b|a)p(a)/p(b); here we use it in a form where we
additionally condition everywhere on the inputs X (but neglect this extra conditioning for
the prior which is independent of the inputs).
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Figure 2.1: Example of Bayesian linear model f(x) = w1 + w2x with intercept
w1 and slope parameter w2. Panel (a) shows the contours of the prior distribution
p(w) ∼ N (0, I), eq. (2.4). Panel (b) shows three training points marked by crosses.
Panel (c) shows contours of the likelihood p(y|X,w) eq. (2.3), assuming a noise level of
σn = 1; note that the slope is much more “well determined” than the intercept. Panel
(d) shows the posterior, p(w|X,y) eq. (2.7); comparing the maximum of the posterior
to the likelihood, we see that the intercept has been shrunk towards zero whereas the
more ’well determined’ slope is almost unchanged. All contour plots give the 1 and
2 standard deviation equi-probability contours. Superimposed on the data in panel
(b) are the predictive mean plus/minus two standard deviations of the (noise-free)
predictive distribution p(f∗|x∗, X,y), eq. (2.9).

w. In a non-Bayesian setting the negative log prior is sometimes thought of
as a penalty term, and the MAP point is known as the penalized maximum
likelihood estimate of the weights, and this may cause some confusion between
the two approaches. Note, however, that in the Bayesian setting the MAP
estimate plays no special rôle.3 The penalized maximum likelihood procedure

3In this case, due to symmetries in the model and posterior, it happens that the mean
of the predictive distribution is the same as the prediction at the mean of the posterior.
However, this is not the case in general.
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is known in this case as ridge regression [Hoerl and Kennard, 1970] because of ridge regression

the effect of the quadratic penalty term 1
2w

>Σ−1
p w from the log prior.

To make predictions for a test case we average over all possible parameter predictive distribution

values, weighted by their posterior probability. This is in contrast to non-
Bayesian schemes, where a single parameter is typically chosen by some crite-
rion. Thus the predictive distribution for f∗ , f(x∗) at x∗ is given by averaging
the output of all possible linear models w.r.t. the Gaussian posterior

p(f∗|x∗, X,y) =
∫
p(f∗|x∗,w)p(w|X,y) dw

= N
( 1
σ2

n

x>∗ A
−1Xy, x>∗ A

−1x∗
)
.

(2.9)

The predictive distribution is again Gaussian, with a mean given by the poste-
rior mean of the weights from eq. (2.8) multiplied by the test input, as one would
expect from symmetry considerations. The predictive variance is a quadratic
form of the test input with the posterior covariance matrix, showing that the
predictive uncertainties grow with the magnitude of the test input, as one would
expect for a linear model.

An example of Bayesian linear regression is given in Figure 2.1. Here we
have chosen a 1-d input space so that the weight-space is two-dimensional and
can be easily visualized. Contours of the Gaussian prior are shown in panel (a).
The data are depicted as crosses in panel (b). This gives rise to the likelihood
shown in panel (c) and the posterior distribution in panel (d). The predictive
distribution and its error bars are also marked in panel (b).

2.1.2 Projections of Inputs into Feature Space

In the previous section we reviewed the Bayesian linear model which suffers
from limited expressiveness. A very simple idea to overcome this problem is to
first project the inputs into some high dimensional space using a set of basis feature space

functions and then apply the linear model in this space instead of directly on
the inputs themselves. For example, a scalar input x could be projected into
the space of powers of x: φ(x) = (1, x, x2, x3, . . .)> to implement polynomial polynomial regression

regression. As long as the projections are fixed functions (i.e. independent of
the parameters w) the model is still linear in the parameters, and therefore linear in the parameters

analytically tractable.4 This idea is also used in classification, where a dataset
which is not linearly separable in the original data space may become linearly
separable in a high dimensional feature space, see section 3.3. Application of
this idea begs the question of how to choose the basis functions? As we shall
demonstrate (in chapter 5), the Gaussian process formalism allows us to answer
this question. For now, we assume that the basis functions are given.

Specifically, we introduce the function φ(x) which maps a D-dimensional
input vector x into an N dimensional feature space. Further let the matrix

4Models with adaptive basis functions, such as e.g. multilayer perceptrons, may at first
seem like a useful extension, but they are much harder to treat, except in the limit of an
infinite number of hidden units, see section 4.2.3.
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Φ(X) be the aggregation of columns φ(x) for all cases in the training set. Now
the model is

f(x) = φ(x)>w, (2.10)

where the vector of parameters now has length N . The analysis for this model
is analogous to the standard linear model, except that everywhere Φ(X) is
substituted for X. Thus the predictive distribution becomesexplicit feature space

formulation

f∗|x∗, X,y ∼ N
( 1
σ2

n

φ(x∗)>A−1Φy, φ(x∗)>A−1φ(x∗)
)

(2.11)

with Φ = Φ(X) and A = σ−2
n ΦΦ> + Σ−1

p . To make predictions using this
equation we need to invert the A matrix of size N × N which may not be
convenient if N , the dimension of the feature space, is large. However, we can
rewrite the equation in the following wayalternative formulation

f∗|x∗, X,y ∼ N
(
φ>∗ ΣpΦ(K + σ2

nI)
−1y,

φ>∗ Σpφ∗ − φ
>
∗ ΣpΦ(K + σ2

nI)
−1Φ>Σpφ∗

)
,

(2.12)

where we have used the shorthand φ(x∗) = φ∗ and defined K = Φ>ΣpΦ.
To show this for the mean, first note that using the definitions of A and K
we have σ−2

n Φ(K + σ2
nI) = σ−2

n Φ(Φ>ΣpΦ + σ2
nI) = AΣpΦ. Now multiplying

through by A−1 from left and (K + σ2
nI)

−1 from the right gives σ−2
n A−1Φ =

ΣpΦ(K+σ2
nI)

−1, showing the equivalence of the mean expressions in eq. (2.11)
and eq. (2.12). For the variance we use the matrix inversion lemma, eq. (A.9),
setting Z−1 = Σp, W−1 = σ2

nI and V = U = Φ therein. In eq. (2.12) we
need to invert matrices of size n × n which is more convenient when n < N .computational load

Geometrically, note that n datapoints can span at most n dimensions in the
feature space.

Notice that in eq. (2.12) the feature space always enters in the form of
Φ>ΣpΦ, φ>∗ ΣpΦ, or φ>∗ Σpφ∗; thus the entries of these matrices are invariably of
the form φ(x)>Σpφ(x′) where x and x′ are in either the training or the test sets.
Let us define k(x,x′) = φ(x)>Σpφ(x′). For reasons that will become clear later
we call k(·, ·) a covariance function or kernel . Notice that φ(x)>Σpφ(x′) is ankernel

inner product (with respect to Σp). As Σp is positive definite we can define Σ1/2
p

so that (Σ1/2
p )2 = Σp; for example if the SVD (singular value decomposition)

of Σp = UDU>, where D is diagonal, then one form for Σ1/2
p is UD1/2U>.

Then defining ψ(x) = Σ1/2
p φ(x) we obtain a simple dot product representation

k(x,x′) = ψ(x) ·ψ(x′).

If an algorithm is defined solely in terms of inner products in input space
then it can be lifted into feature space by replacing occurrences of those inner
products by k(x,x′); this is sometimes called the kernel trick. This technique iskernel trick

particularly valuable in situations where it is more convenient to compute the
kernel than the feature vectors themselves. As we will see in the coming sections,
this often leads to considering the kernel as the object of primary interest, and
its corresponding feature space as having secondary practical importance.
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2.2 Function-space View

An alternative and equivalent way of reaching identical results to the previous
section is possible by considering inference directly in function space. We use
a Gaussian process (GP) to describe a distribution over functions. Formally:

Definition 2.1 A Gaussian process is a collection of random variables, any Gaussian process

finite number of which have a joint Gaussian distribution. �

A Gaussian process is completely specified by its mean function and co- covariance and
mean functionvariance function. We define mean function m(x) and the covariance function

k(x,x′) of a real process f(x) as

m(x) = E[f(x)],
k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))],

(2.13)

and will write the Gaussian process as

f(x) ∼ GP
(
m(x), k(x,x′)

)
. (2.14)

Usually, for notational simplicity we will take the mean function to be zero,
although this need not be done, see section 2.7.

In our case the random variables represent the value of the function f(x)
at location x. Often, Gaussian processes are defined over time, i.e. where the
index set of the random variables is time. This is not (normally) the case in index set ≡

input domainour use of GPs; here the index set X is the set of possible inputs, which could
be more general, e.g. RD. For notational convenience we use the (arbitrary)
enumeration of the cases in the training set to identify the random variables
such that fi , f(xi) is the random variable corresponding to the case (xi, yi)
as would be expected.

A Gaussian process is defined as a collection of random variables. Thus, the
definition automatically implies a consistency requirement, which is also some-
times known as the marginalization property. This property simply means marginalization

propertythat if the GP e.g. specifies (y1, y2) ∼ N (µ,Σ), then it must also specify
y1 ∼ N (µ1,Σ11) where Σ11 is the relevant submatrix of Σ, see eq. (A.6).
In other words, examination of a larger set of variables does not change the
distribution of the smaller set. Notice that the consistency requirement is au-
tomatically fulfilled if the covariance function specifies entries of the covariance
matrix.5 The definition does not exclude Gaussian processes with finite index finite index set

sets (which would be simply Gaussian distributions), but these are not partic-
ularly interesting for our purposes.

5Note, however, that if you instead specified e.g. a function for the entries of the inverse
covariance matrix, then the marginalization property would no longer be fulfilled, and one
could not think of this as a consistent collection of random variables—this would not qualify
as a Gaussian process.
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A simple example of a Gaussian process can be obtained from our BayesianBayesian linear model
is a Gaussian process linear regression model f(x) = φ(x)>w with prior w ∼ N (0,Σp). We have for

the mean and covariance

E[f(x)] = φ(x)>E[w] = 0,

E[f(x)f(x′)] = φ(x)>E[ww>]φ(x′) = φ(x)>Σpφ(x′).
(2.15)

Thus f(x) and f(x′) are jointly Gaussian with zero mean and covariance given
by φ(x)>Σpφ(x′). Indeed, the function values f(x1), . . . , f(xn) corresponding
to any number of input points n are jointly Gaussian, although if N < n then
this Gaussian is singular (as the joint covariance matrix will be of rank N).

In this chapter our running example of a covariance function will be the
squared exponential6 (SE) covariance function; other covariance functions are
discussed in chapter 4. The covariance function specifies the covariance between
pairs of random variables

cov
(
f(xp), f(xq)

)
= k(xp,xq) = exp

(
− 1

2 |xp − xq|2
)
. (2.16)

Note, that the covariance between the outputs is written as a function of the
inputs. For this particular covariance function, we see that the covariance is
almost unity between variables whose corresponding inputs are very close, and
decreases as their distance in the input space increases.

It can be shown (see section 4.3.1) that the squared exponential covariance
function corresponds to a Bayesian linear regression model with an infinite
number of basis functions. Indeed for every positive definite covariance functionbasis functions

k(·, ·), there exists a (possibly infinite) expansion in terms of basis functions
(see Mercer’s theorem in section 4.3). We can also obtain the SE covariance
function from the linear combination of an infinite number of Gaussian-shaped
basis functions, see eq. (4.13) and eq. (4.30).

The specification of the covariance function implies a distribution over func-
tions. To see this, we can draw samples from the distribution of functions evalu-
ated at any number of points; in detail, we choose a number of input points,7 X∗
and write out the corresponding covariance matrix using eq. (2.16) elementwise.
Then we generate a random Gaussian vector with this covariance matrix

f∗ ∼ N
(
0,K(X∗, X∗)

)
, (2.17)

and plot the generated values as a function of the inputs. Figure 2.2(a) shows
three such samples. The generation of multivariate Gaussian samples is de-
scribed in section A.2.

In the example in Figure 2.2 the input values were equidistant, but this
need not be the case. Notice that “informally” the functions look smooth.smoothness

In fact the squared exponential covariance function is infinitely differentiable,
leading to the process being infinitely mean-square differentiable (see section
4.1). We also see that the functions seem to have a characteristic length-scale,characteristic

length-scale 6Sometimes this covariance function is called the Radial Basis Function (RBF) or Gaussian;
here we prefer squared exponential.

7Technically, these input points play the rôle of test inputs and therefore carry a subscript
asterisk; this will become clearer later when both training and test points are involved.
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Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp−xq| by |xp−xq|/` in eq. (2.16) for some positive constant ` we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors affect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f∗ according to the
prior is [

f
f∗

]
∼ N

(
0,
[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (2.18)

If there are n training points and n∗ test points then K(X,X∗) denotes the
n × n∗ matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X,X), K(X∗, X∗) and K(X∗, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection
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though this strategy would not be computationally very efficient. Fortunately,
in probabilistic terms this operation is extremely simple, corresponding to con-
ditioning the joint Gaussian prior distribution on the observations (see section
A.2 for further details) to givenoise-free predictive

distribution
f∗|X∗, X, f ∼ N

(
K(X∗, X)K(X,X)−1f ,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)
)
.

(2.19)

Function values f∗ (corresponding to test inputs X∗) can be sampled from the
joint posterior distribution by evaluating the mean and covariance matrix from
eq. (2.19) and generating samples according to the method described in section
A.2.

Figure 2.2(b) shows the results of these computations given the five data-
points marked with + symbols. Notice that it is trivial to extend these compu-
tations to multidimensional inputs – one simply needs to change the evaluation
of the covariance function in accordance with eq. (2.16), although the resulting
functions may be harder to display graphically.

Prediction using Noisy Observations

It is typical for more realistic modelling situations that we do not have access
to function values themselves, but only noisy versions thereof y = f(x) + ε.8

Assuming additive independent identically distributed Gaussian noise ε with
variance σ2

n, the prior on the noisy observations becomes

cov(yp, yq) = k(xp,xq) + σ2
nδpq or cov(y) = K(X,X) + σ2

nI, (2.20)

where δpq is a Kronecker delta which is one iff p = q and zero otherwise. It
follows from the independence9 assumption about the noise, that a diagonal
matrix10 is added, in comparison to the noise free case, eq. (2.16). Introducing
the noise term in eq. (2.18) we can write the joint distribution of the observed
target values and the function values at the test locations under the prior as[

y
f∗

]
∼ N

(
0,
[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (2.21)

Deriving the conditional distribution corresponding to eq. (2.19) we arrive atpredictive distribution

the key predictive equations for Gaussian process regression

f∗|X,y, X∗ ∼ N
(
f̄∗, cov(f∗)

)
, where (2.22)

f̄∗ , E[f∗|X,y, X∗] = K(X∗, X)[K(X,X) + σ2
nI]

−1y, (2.23)

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI
]−1

K(X,X∗). (2.24)

8There are some situations where it is reasonable to assume that the observations are
noise-free, for example for computer simulations, see e.g. Sacks et al. [1989].

9More complicated noise models with non-trivial covariance structure can also be handled,
see section 9.2.

10Notice that the Kronecker delta is on the index of the cases, not the value of the input;
for the signal part of the covariance function the input value is the index set to the random
variables describing the function, for the noise part it is the identity of the point.
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Figure 2.3: Graphical model (chain graph) for a GP for regression. Squares rep-
resent observed variables and circles represent unknowns. The thick horizontal bar
represents a set of fully connected nodes. Note that an observation yi is conditionally
independent of all other nodes given the corresponding latent variable, fi. Because of
the marginalization property of GPs addition of further inputs, x, latent variables, f ,
and unobserved targets, y∗, does not change the distribution of any other variables.

Notice that we now have exact correspondence with the weight space view in
eq. (2.12) when identifying K(C,D) = Φ(C)>ΣpΦ(D), where C,D stand for ei-
ther X or X∗. For any set of basis functions, we can compute the corresponding correspondence with

weight-space viewcovariance function as k(xp,xq) = φ(xp)>Σpφ(xq); conversely, for every (posi-
tive definite) covariance function k, there exists a (possibly infinite) expansion
in terms of basis functions, see section 4.3.

The expressions involving K(X,X), K(X,X∗) and K(X∗, X∗) etc. can look compact notation

rather unwieldy, so we now introduce a compact form of the notation setting
K = K(X,X) and K∗ = K(X,X∗). In the case that there is only one test
point x∗ we write k(x∗) = k∗ to denote the vector of covariances between the
test point and the n training points. Using this compact notation and for a
single test point x∗, equations 2.23 and 2.24 reduce to

f̄∗ = k>∗ (K + σ2
nI)

−1y, (2.25)

V[f∗] = k(x∗,x∗)− k>∗ (K + σ2
nI)

−1k∗. (2.26)

Let us examine the predictive distribution as given by equations 2.25 and 2.26. predictive distribution

Note first that the mean prediction eq. (2.25) is a linear combination of obser-
vations y; this is sometimes referred to as a linear predictor . Another way to linear predictor

look at this equation is to see it as a linear combination of n kernel functions,
each one centered on a training point, by writing

f̄(x∗) =
n∑

i=1

αik(xi,x∗) (2.27)

where α = (K + σ2
nI)

−1y. The fact that the mean prediction for f(x∗) can be
written as eq. (2.27) despite the fact that the GP can be represented in terms
of a (possibly infinite) number of basis functions is one manifestation of the
representer theorem; see section 6.2 for more on this point. We can understand representer theorem

this result intuitively because although the GP defines a joint Gaussian dis-
tribution over all of the y variables, one for each point in the index set X , for
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Figure 2.4: Panel (a) is identical to Figure 2.2(b) showing three random functions
drawn from the posterior. Panel (b) shows the posterior co-variance between f(x) and
f(x′) for the same data for three different values of x′. Note, that the covariance at
close points is high, falling to zero at the training points (where there is no variance,
since it is a noise-free process), then becomes negative, etc. This happens because if
the smooth function happens to be less than the mean on one side of the data point,
it tends to exceed the mean on the other side, causing a reversal of the sign of the
covariance at the data points. Note for contrast that the prior covariance is simply
of Gaussian shape and never negative.

making predictions at x∗ we only care about the (n+1)-dimensional distribution
defined by the n training points and the test point. As a Gaussian distribu-
tion is marginalized by just taking the relevant block of the joint covariance
matrix (see section A.2) it is clear that conditioning this (n+1)-dimensional
distribution on the observations gives us the desired result. A graphical model
representation of a GP is given in Figure 2.3.

Note also that the variance in eq. (2.24) does not depend on the observed
targets, but only on the inputs; this is a property of the Gaussian distribution.
The variance is the difference between two terms: the first term K(X∗, X∗) is
simply the prior covariance; from that is subtracted a (positive) term, repre-
senting the information the observations gives us about the function. We can
very simply compute the predictive distribution of test targets y∗ by addingnoisy predictions

σ2
nI to the variance in the expression for cov(f∗).

The predictive distribution for the GP model gives more than just pointwisejoint predictions

errorbars of the simplified eq. (2.26). Although not stated explicitly, eq. (2.24)
holds unchanged when X∗ denotes multiple test inputs; in this case the co-
variance of the test targets are computed (whose diagonal elements are the
pointwise variances). In fact, eq. (2.23) is the mean function and eq. (2.24) the
covariance function of the (Gaussian) posterior process; recall the definitionposterior process

of Gaussian process from page 13. The posterior covariance in illustrated in
Figure 2.4(b).

It will be useful (particularly for chapter 5) to introduce the marginal likeli-
hood (or evidence) p(y|X) at this point. The marginal likelihood is the integralmarginal likelihood
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input: X (inputs), y (targets), k (covariance function), σ2
n (noise level),

x∗ (test input)
2: L := cholesky(K + σ2

nI)
α := L>\(L\y)

4: f̄∗ := k>∗ α

}
predictive mean eq. (2.25)

v := L\k∗
6: V[f∗] := k(x∗,x∗)− v>v

}
predictive variance eq. (2.26)

log p(y|X) := − 1
2y

>α−
∑

i logLii − n
2 log 2π eq. (2.30)

8: return: f̄∗ (mean), V[f∗] (variance), log p(y|X) (log marginal likelihood)

Algorithm 2.1: Predictions and log marginal likelihood for Gaussian process regres-
sion. The implementation addresses the matrix inversion required by eq. (2.25) and
(2.26) using Cholesky factorization, see section A.4. For multiple test cases lines
4-6 are repeated. The log determinant required in eq. (2.30) is computed from the
Cholesky factor (for large n it may not be possible to represent the determinant itself).
The computational complexity is n3/6 for the Cholesky decomposition in line 2, and
n2/2 for solving triangular systems in line 3 and (for each test case) in line 5.

of the likelihood times the prior

p(y|X) =
∫
p(y|f , X)p(f |X) df . (2.28)

The term marginal likelihood refers to the marginalization over the function
values f . Under the Gaussian process model the prior is Gaussian, f |X ∼
N (0,K), or

log p(f |X) = − 1
2 f
>K−1f − 1

2 log |K| − n
2 log 2π, (2.29)

and the likelihood is a factorized Gaussian y|f ∼ N (f , σ2
nI) so we can make use

of equations A.7 and A.8 to perform the integration yielding the log marginal
likelihood

log p(y|X) = − 1
2y

>(K + σ2
nI)

−1y − 1
2 log |K + σ2

nI| − n
2 log 2π. (2.30)

This result can also be obtained directly by observing that y ∼ N (0,K+σ2
nI).

A practical implementation of Gaussian process regression (GPR) is shown
in Algorithm 2.1. The algorithm uses Cholesky decomposition, instead of di-
rectly inverting the matrix, since it is faster and numerically more stable, see
section A.4. The algorithm returns the predictive mean and variance for noise
free test data—to compute the predictive distribution for noisy test data y∗,
simply add the noise variance σ2

n to the predictive variance of f∗.

2.3 Varying the Hyperparameters

Typically the covariance functions that we use will have some free parameters.
For example, the squared-exponential covariance function in one dimension has
the following form

ky(xp, xq) = σ2
f exp

(
− 1

2`2
(xp − xq)2

)
+ σ2

nδpq. (2.31)
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Figure 2.5: (a) Data is generated from a GP with hyperparameters (`, σf , σn) =
(1, 1, 0.1), as shown by the + symbols. Using Gaussian process prediction with these
hyperparameters we obtain a 95% confidence region for the underlying function f
(shown in grey). Panels (b) and (c) again show the 95% confidence region, but this
time for hyperparameter values (0.3, 1.08, 0.00005) and (3.0, 1.16, 0.89) respectively.

The covariance is denoted ky as it is for the noisy targets y rather than for the
underlying function f . Observe that the length-scale `, the signal variance σ2

f

and the noise variance σ2
n can be varied. In general we call the free parametershyperparameters

hyperparameters.11

In chapter 5 we will consider various methods for determining the hyperpa-
rameters from training data. However, in this section our aim is more simply to
explore the effects of varying the hyperparameters on GP prediction. Consider
the data shown by + signs in Figure 2.5(a). This was generated from a GP
with the SE kernel with (`, σf , σn) = (1, 1, 0.1). The figure also shows the 2
standard-deviation error bars for the predictions obtained using these values of
the hyperparameters, as per eq. (2.24). Notice how the error bars get larger
for input values that are distant from any training points. Indeed if the x-axis

11We refer to the parameters of the covariance function as hyperparameters to emphasize
that they are parameters of a non-parametric model; in accordance with the weight-space
view, section 2.1, the parameters (weights) of the underlying parametric model have been
integrated out.
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were extended one would see the error bars reflect the prior standard deviation
of the process σf away from the data.

If we set the length-scale shorter so that ` = 0.3 and kept the other pa-
rameters the same, then generating from this process we would expect to see
plots like those in Figure 2.5(a) except that the x-axis should be rescaled by a
factor of 0.3; equivalently if the same x-axis was kept as in Figure 2.5(a) then
a sample function would look much more wiggly.

If we make predictions with a process with ` = 0.3 on the data generated too short length-scale

from the ` = 1 process then we obtain the result in Figure 2.5(b). The remaining
two parameters were set by optimizing the marginal likelihood, as explained in
chapter 5. In this case the noise parameter is reduced to σn = 0.00005 as the
greater flexibility of the “signal” means that the noise level can be reduced.
This can be observed at the two datapoints near x = 2.5 in the plots. In Figure
2.5(a) (` = 1) these are essentially explained as a similar function value with
differing noise. However, in Figure 2.5(b) (` = 0.3) the noise level is very low,
so these two points have to be explained by a sharp variation in the value of
the underlying function f . Notice also that the short length-scale means that
the error bars in Figure 2.5(b) grow rapidly away from the datapoints.

In contrast, we can set the length-scale longer, for example to ` = 3, as shown too long length-scale

in Figure 2.5(c). Again the remaining two parameters were set by optimizing the
marginal likelihood. In this case the noise level has been increased to σn = 0.89
and we see that the data is now explained by a slowly varying function with a
lot of noise.

Of course we can take the position of a quickly-varying signal with low noise,
or a slowly-varying signal with high noise to extremes; the former would give rise
to a white-noise process model for the signal, while the latter would give rise to a
constant signal with added white noise. Under both these models the datapoints
produced should look like white noise. However, studying Figure 2.5(a) we see
that white noise is not a convincing model of the data, as the sequence of y’s does
not alternate sufficiently quickly but has correlations due to the variability of
the underlying function. Of course this is relatively easy to see in one dimension, model comparison

but methods such as the marginal likelihood discussed in chapter 5 generalize
to higher dimensions and allow us to score the various models. In this case the
marginal likelihood gives a clear preference for (`, σf , σn) = (1, 1, 0.1) over the
other two alternatives.

2.4 Decision Theory for Regression

In the previous sections we have shown how to compute predictive distributions
for the outputs y∗ corresponding to the novel test input x∗. The predictive dis-
tribution is Gaussian with mean and variance given by eq. (2.25) and eq. (2.26).
In practical applications, however, we are often forced to make a decision about
how to act, i.e. we need a point-like prediction which is optimal in some sense. optimal predictions

To this end we need a loss function, L(ytrue, yguess), which specifies the loss (or loss function
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penalty) incurred by guessing the value yguess when the true value is ytrue. For
example, the loss function could equal the absolute deviation between the guess
and the truth.

Notice that we computed the predictive distribution without reference to
the loss function. In non-Bayesian paradigms, the model is typically trainednon-Bayesian paradigm

by minimizing the empirical risk (or loss). In contrast, in the Bayesian settingBayesian paradigm
there is a clear separation between the likelihood function (used for training, in
addition to the prior) and the loss function. The likelihood function describes
how the noisy measurements are assumed to deviate from the underlying noise-
free function. The loss function, on the other hand, captures the consequences
of making a specific choice, given an actual true state. The likelihood and loss
function need not have anything in common.12

Our goal is to make the point prediction yguess which incurs the smallest loss,
but how can we achieve that when we don’t know ytrue? Instead, we minimize
the expected loss or risk, by averaging w.r.t. our model’s opinion as to what theexpected loss, risk

truth might be

R̃L(yguess|x∗) =
∫
L(y∗, yguess)p(y∗|x∗,D) dy∗. (2.32)

Thus our best guess, in the sense that it minimizes the expected loss, is

yoptimal|x∗ = argmin
yguess

R̃L(yguess|x∗). (2.33)

In general the value of yguess that minimizes the risk for the loss function |yguess−absolute error loss

y∗| is the median of p(y∗|x∗,D), while for the squared loss (yguess − y∗)2 it issquared error loss

the mean of this distribution. When the predictive distribution is Gaussian
the mean and the median coincide, and indeed for any symmetric loss function
and symmetric predictive distribution we always get yguess as the mean of the
predictive distribution. However, in many practical problems the loss functions
can be asymmetric, e.g. in safety critical applications, and point predictions
may be computed directly from eq. (2.32) and eq. (2.33). A comprehensive
treatment of decision theory can be found in Berger [1985].

2.5 An Example Application

In this section we use Gaussian process regression to learn the inverse dynamics
of a seven degrees-of-freedom SARCOS anthropomorphic robot arm. The taskrobot arm

is to map from a 21-dimensional input space (7 joint positions, 7 joint velocities,
7 joint accelerations) to the corresponding 7 joint torques. This task has pre-
viously been used to study regression algorithms by Vijayakumar and Schaal
[2000], Vijayakumar et al. [2002] and Vijayakumar et al. [2005].13 Following

12Beware of fallacious arguments like: a Gaussian likelihood implies a squared error loss
function.

13We thank Sethu Vijayakumar for providing us with the data.
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this previous work we present results below on just one of the seven mappings,
from the 21 input variables to the first of the seven torques.

One might ask why it is necessary to learn this mapping; indeed there exist why learning?

physics-based rigid-body-dynamics models which allow us to obtain the torques
from the position, velocity and acceleration variables. However, the real robot
arm is actuated hydraulically and is rather lightweight and compliant, so the
assumptions of the rigid-body-dynamics model are violated (as we see below).
It is worth noting that the rigid-body-dynamics model is nonlinear, involving
trigonometric functions and squares of the input variables.

An inverse dynamics model can be used in the following manner: a planning
module decides on a trajectory that takes the robot from its start to goal states,
and this specifies the desired positions, velocities and accelerations at each time.
The inverse dynamics model is used to compute the torques needed to achieve
this trajectory and errors are corrected using a feedback controller.

The dataset consists of 48,933 input-output pairs, of which 44,484 were used
as a training set and the remaining 4,449 were used as a test set. The inputs
were linearly rescaled to have zero mean and unit variance on the training set.
The outputs were centered so as to have zero mean on the training set.

Given a prediction method, we can evaluate the quality of predictions in
several ways. Perhaps the simplest is the squared error loss, where we compute
the squared residual (y∗ − f̄(x∗))2 between the mean prediction and the target
at each test point. This can be summarized by the mean squared error (MSE), MSE

by averaging over the test set. However, this quantity is sensitive to the overall
scale of the target values, so it makes sense to normalize by the variance of the
targets of the test cases to obtain the standardized mean squared error (SMSE).
This causes the trivial method of guessing the mean of the training targets to SMSE

have a SMSE of approximately 1.

Additionally if we produce a predictive distribution at each test input we
can evaluate the negative log probability of the target under the model.14 As
GPR produces a Gaussian predictive density, one obtains

− log p(y∗|D,x∗) =
1
2

log(2πσ2
∗) +

(y∗ − f̄(x∗))2

2σ2
∗

, (2.34)

where the predictive variance σ2
∗ for GPR is computed as σ2

∗ = V(f∗) + σ2
n,

where V(f∗) is given by eq. (2.26); we must include the noise variance σ2
n as we

are predicting the noisy target y∗. This loss can be standardized by subtracting
the loss that would be obtained under the trivial model which predicts using
a Gaussian with the mean and variance of the training data. We denote this
the standardized log loss (SLL). The mean SLL is denoted MSLL. Thus the MSLL

MSLL will be approximately zero for simple methods and negative for better
methods.

A number of models were tested on the data. A linear regression (LR) model
provides a simple baseline for the SMSE. By estimating the noise level from the

14It makes sense to use the negative log probability so as to obtain a loss, not a utility.
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Method SMSE MSLL
LR 0.075 -1.29
RBD 0.104 –
LWPR 0.040 –
GPR 0.011 -2.25

Table 2.1: Test results on the inverse dynamics problem for a number of different
methods. The “–” denotes a missing entry, caused by two methods not producing full
predictive distributions, so MSLL could not be evaluated.

residuals on the training set one can also obtain a predictive variance and thus
get a MSLL value for LR. The rigid-body-dynamics (RBD) model has a number
of free parameters; these were estimated by Vijayakumar et al. [2005] using a
least-squares fitting procedure. We also give results for the locally weighted
projection regression (LWPR) method of Vijayakumar et al. [2005] which is an
on-line method that cycles through the dataset multiple times. For the GP
models it is computationally expensive to make use of all 44,484 training cases
due to the O(n3) scaling of the basic algorithm. In chapter 8 we present several
different approximate GP methods for large datasets. The result given in Table
2.1 was obtained with the subset of regressors (SR) approximation with a subset
size of 4096. This result is taken from Table 8.1, which gives full results of the
various approximation methods applied to the inverse dynamics problem. The
squared exponential covariance function was used with a separate length-scale
parameter for each of the 21 input dimensions, plus the signal and noise variance
parameters σ2

f and σ2
n. These parameters were set by optimizing the marginal

likelihood eq. (2.30) on a subset of the data (see also chapter 5).

The results for the various methods are presented in Table 2.1. Notice that
the problem is quite non-linear, so the linear regression model does poorly in
comparison to non-linear methods.15 The non-linear method LWPR improves
over linear regression, but is outperformed by GPR.

2.6 Smoothing, Weight Functions and Equiva-
lent Kernels

Gaussian process regression aims to reconstruct the underlying signal f by
removing the contaminating noise ε. To do this it computes a weighted average
of the noisy observations y as f̄(x∗) = k(x∗)>(K+σ2

nI)
−1y; as f̄(x∗) is a linear

combination of the y values, Gaussian process regression is a linear smootherlinear smoother

(see Hastie and Tibshirani [1990, sec. 2.8] for further details). In this section
we study smoothing first in terms of a matrix analysis of the predictions at the
training points, and then in terms of the equivalent kernel.

15It is perhaps surprising that RBD does worse than linear regression. However, Stefan
Schaal (pers. comm., 2004) states that the RBD parameters were optimized on a very large
dataset, of which the training data used here is subset, and if the RBD model were optimized
w.r.t. this training set one might well expect it to outperform linear regression.
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The predicted mean values f̄ at the training points are given by

f̄ = K(K + σ2
nI)

−1y. (2.35)

Let K have the eigendecomposition K =
∑n

i=1λiuiu>i , where λi is the ith eigendecomposition

eigenvalue and ui is the corresponding eigenvector. As K is real and sym-
metric positive semidefinite, its eigenvalues are real and non-negative, and its
eigenvectors are mutually orthogonal. Let y =

∑n
i=1γiui for some coefficients

γi = u>i y. Then

f̄ =
n∑

i=1

γiλi

λi + σ2
n

ui. (2.36)

Notice that if λi/(λi + σ2
n)� 1 then the component in y along ui is effectively

eliminated. For most covariance functions that are used in practice the eigen-
values are larger for more slowly varying eigenvectors (e.g. fewer zero-crossings)
so that this means that high-frequency components in y are smoothed out.
The effective number of parameters or degrees of freedom of the smoother is degrees of freedom

defined as tr(K(K + σ2
nI)

−1) =
∑n

i=1 λi/(λi + σ2
n), see Hastie and Tibshirani

[1990, sec. 3.5]. Notice that this counts the number of eigenvectors which are
not eliminated.

We can define a vector of functions h(x∗) = (K + σ2
nI)

−1k(x∗). Thus we
have f̄(x∗) = h(x∗)>y, making it clear that the mean prediction at a point
x∗ is a linear combination of the target values y. For a fixed test point x∗,
h(x∗) gives the vector of weights applied to targets y. h(x∗) is called the weight
function [Silverman, 1984]. As Gaussian process regression is a linear smoother, weight function

the weight function does not depend on y. Note the difference between a
linear model, where the prediction is a linear combination of the inputs, and a
linear smoother, where the prediction is a linear combination of the training set
targets.

Understanding the form of the weight function is made complicated by the
matrix inversion ofK+σ2

nI and the fact thatK depends on the specific locations
of the n datapoints. Idealizing the situation one can consider the observations
to be “smeared out” in x-space at some density of observations. In this case
analytic tools can be brought to bear on the problem, as shown in section 7.1.
By analogy to kernel smoothing, Silverman [1984] called the idealized weight
function the equivalent kernel ; see also Girosi et al. [1995, sec. 2.1]. equivalent kernel

A kernel smoother centres a kernel function16 κ on x∗ and then computes kernel smoother

κi = κ(|xi − x∗|/`) for each data point (xi, yi), where ` is a length-scale. The
Gaussian is a commonly used kernel function. The prediction for f(x∗) is
computed as f̂(x∗) =

∑n
i=1wiyi where wi = κi/

∑n
j=1 κj . This is also known

as the Nadaraya-Watson estimator, see e.g. Scott [1992, sec. 8.1].

The weight function and equivalent kernel for a Gaussian process are illus-
trated in Figure 2.6 for a one-dimensional input variable x. We have used the
squared exponential covariance function and have set the length-scale ` = 0.0632
(so that `2 = 0.004). There are n = 50 training points spaced randomly along

16Note that this kernel function does not need to be a valid covariance function.
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Figure 2.6: Panels (a)-(c) show the weight function h(x∗) (dots) corresponding to
the n = 50 training points, the equivalent kernel (solid) and the original squared
exponential kernel (dashed). Panel (d) shows the equivalent kernels for two different
data densities. See text for further details. The small cross at the test point is to
scale in all four plots.

the x-axis. Figures 2.6(a) and 2.6(b) show the weight function and equivalent
kernel for x∗ = 0.5 and x∗ = 0.05 respectively, for σ2

n = 0.1. Figure 2.6(c) is also
for x∗ = 0.5 but uses σ2

n = 10. In each case the dots correspond to the weight
function h(x∗) and the solid line is the equivalent kernel, whose construction is
explained below. The dashed line shows a squared exponential kernel centered
on the test point, scaled to have the same height as the maximum value in the
equivalent kernel. Figure 2.6(d) shows the variation in the equivalent kernel as
a function of n, the number of datapoints in the unit interval.

Many interesting observations can be made from these plots. Observe that
the equivalent kernel has (in general) a shape quite different to the original SE
kernel. In Figure 2.6(a) the equivalent kernel is clearly oscillatory (with negative
sidelobes) and has a higher spatial frequency than the original kernel. Figure
2.6(b) shows similar behaviour although due to edge effects the equivalent kernel
is truncated relative to that in Figure 2.6(a). In Figure 2.6(c) we see that at
higher noise levels the negative sidelobes are reduced and the width of the
equivalent kernel is similar to the original kernel. Also note that the overall
height of the equivalent kernel in (c) is reduced compared to that in (a) and
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(b)—it averages over a wider area. The more oscillatory equivalent kernel for
lower noise levels can be understood in terms of the eigenanalysis above; at
higher noise levels only the large λ (slowly varying) components of y remain,
while for smaller noise levels the more oscillatory components are also retained.

In Figure 2.6(d) we have plotted the equivalent kernel for n = 10 and n =
250 datapoints in [0, 1]; notice how the width of the equivalent kernel decreases
as n increases. We discuss this behaviour further in section 7.1.

The plots of equivalent kernels in Figure 2.6 were made by using a dense
grid of ngrid points on [0, 1] and then computing the smoother matrix K(K +
σ2

gridI)
−1. Each row of this matrix is the equivalent kernel at the appropriate

location. However, in order to get the scaling right one has to set σ2
grid =

σ2
nngrid/n; for ngrid > n this means that the effective variance at each of the
ngrid points is larger, but as there are correspondingly more points this effect
cancels out. This can be understood by imagining the situation if there were
ngrid/n independent Gaussian observations with variance σ2

grid at a single x-
position; this would be equivalent to one Gaussian observation with variance
σ2

n. In effect the n observations have been smoothed out uniformly along the
interval. The form of the equivalent kernel can be obtained analytically if we
go to the continuum limit and look to smooth a noisy function. The relevant
theory and some example equivalent kernels are given in section 7.1.

2.7 Incorporating Explicit Basis Functions ∗

It is common but by no means necessary to consider GPs with a zero mean func-
tion. Note that this is not necessarily a drastic limitation, since the mean of the
posterior process is not confined to be zero. Yet there are several reasons why
one might wish to explicitly model a mean function, including interpretability
of the model, convenience of expressing prior information and a number of an-
alytical limits which we will need in subsequent chapters. The use of explicit
basis functions is a way to specify a non-zero mean over functions, but as we
will see in this section, one can also use them to achieve other interesting effects.

Using a fixed (deterministic) mean function m(x) is trivial: Simply apply fixed mean function

the usual zero mean GP to the difference between the observations and the
fixed mean function. With

f(x) ∼ GP
(
m(x), k(x,x′)

)
, (2.37)

the predictive mean becomes

f̄∗ = m(X∗) +K(X∗, X)K−1
y (y −m(X)), (2.38)

where Ky = K + σ2
nI, and the predictive variance remains unchanged from

eq. (2.24).

However, in practice it can often be difficult to specify a fixed mean function.
In many cases it may be more convenient to specify a few fixed basis functions,
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whose coefficients, β, are to be inferred from the data. Considerstochastic mean
function

g(x) = f(x) + h(x)>β, where f(x) ∼ GP
(
0, k(x,x′)

)
, (2.39)

here f(x) is a zero mean GP, h(x) are a set of fixed basis functions, and β are
additional parameters. This formulation expresses that the data is close to a
global linear model with the residuals being modelled by a GP. This idea was
explored explicitly as early as 1975 by Blight and Ott [1975], who used the GP
to model the residuals from a polynomial regression, i.e. h(x) = (1, x, x2, . . .).polynomial regression

When fitting the model, one could optimize over the parameters β jointly with
the hyperparameters of the covariance function. Alternatively, if we take the
prior on β to be Gaussian, β ∼ N (b, B), we can also integrate out these
parameters. Following O’Hagan [1978] we obtain another GP

g(x) ∼ GP
(
h(x)>b, k(x,x′) + h(x)>Bh(x′)

)
, (2.40)

now with an added contribution in the covariance function caused by the un-
certainty in the parameters of the mean. Predictions are made by plugging
the mean and covariance functions of g(x) into eq. (2.39) and eq. (2.24). After
rearranging, we obtain

ḡ(X∗) = H>
∗ β̄ +K>

∗ K
−1
y (y −H>β̄) = f̄(X∗) +R>β̄,

cov(g∗) = cov(f∗) +R>(B−1 +HK−1
y H>)−1R,

(2.41)

where the H matrix collects the h(x) vectors for all training (and H∗ all test)
cases, β̄ = (B−1 +HK−1

y H>)−1(HK−1
y y + B−1b), and R = H∗ −HK−1

y K∗.
Notice the nice interpretation of the mean expression, eq. (2.41) top line: β̄ is
the mean of the global linear model parameters, being a compromise between
the data term and prior, and the predictive mean is simply the mean linear
output plus what the GP model predicts from the residuals. The covariance is
the sum of the usual covariance term and a new non-negative contribution.

Exploring the limit of the above expressions as the prior on the β param-
eter becomes vague, B−1 → O (where O is the matrix of zeros), we obtain a
predictive distribution which is independent of b

ḡ(X∗) = f̄(X∗) +R>β̄,

cov(g∗) = cov(f∗) +R>(HK−1
y H>)−1R,

(2.42)

where the limiting β̄ = (HK−1
y H>)−1HK−1

y y. Notice that predictions under
the limit B−1 → O should not be implemented näıvely by plugging the modified
covariance function from eq. (2.40) into the standard prediction equations, since
the entries of the covariance function tend to infinity, thus making it unsuitable
for numerical implementation. Instead eq. (2.42) must be used. Even if the
non-limiting case is of interest, eq. (2.41) is numerically preferable to a direct
implementation based on eq. (2.40), since the global linear part will often add
some very large eigenvalues to the covariance matrix, affecting its condition
number.
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2.7.1 Marginal Likelihood

In this short section we briefly discuss the marginal likelihood for the model
with a Gaussian prior β ∼ N (b, B) on the explicit parameters from eq. (2.40),
as this will be useful later, particularly in section 6.3.1. We can express the
marginal likelihood from eq. (2.30) as

log p(y|X,b, B) = − 1
2 (H>b− y)>(Ky +H>BH)−1(H>b− y)

− 1
2 log |Ky +H>BH| − n

2 log 2π,
(2.43)

where we have included the explicit mean. We are interested in exploring the
limit where B−1 → O, i.e. when the prior is vague. In this limit the mean of the
prior is irrelevant (as was the case in eq. (2.42)), so without loss of generality
(for the limiting case) we assume for now that the mean is zero, b = 0, giving

log p(y|X,b=0, B) = − 1
2y

>K−1
y y + 1

2y
>Cy

− 1
2 log |Ky| − 1

2 log |B| − 1
2 log |A| − n

2 log 2π,
(2.44)

where A = B−1 + HK−1
y H> and C = K−1

y H>A−1HK−1
y and we have used

the matrix inversion lemma, eq. (A.9) and eq. (A.10).

We now explore the behaviour of the log marginal likelihood in the limit of
vague priors on β. In this limit the variances of the Gaussian in the directions
spanned by columns of H> will become infinite, and it is clear that this will
require special treatment. The log marginal likelihood consists of three terms:
a quadratic form in y, a log determinant term, and a term involving log 2π.
Performing an eigendecomposition of the covariance matrix we see that the
contributions to quadratic form term from the infinite-variance directions will
be zero. However, the log determinant term will tend to minus infinity. The
standard solution [Wahba, 1985, Ansley and Kohn, 1985] in this case is to
project y onto the directions orthogonal to the span of H> and compute the
marginal likelihood in this subspace. Let the rank of H> be m. Then as
shown in Ansley and Kohn [1985] this means that we must discard the terms
− 1

2 log |B| − m
2 log 2π from eq. (2.44) to give

log p(y|X) = − 1
2y

>K−1
y y + 1

2y
>Cy − 1

2 log |Ky| − 1
2 log |A| − n−m

2 log 2π,
(2.45)

where A = HK−1
y H> and C = K−1

y H>A−1HK−1
y .

2.8 History and Related Work

Prediction with Gaussian processes is certainly not a very recent topic, espe-
cially for time series analysis; the basic theory goes back at least as far as the time series

work of Wiener [1949] and Kolmogorov [1941] in the 1940’s. Indeed Lauritzen
[1981] discusses relevant work by the Danish astronomer T. N. Thiele dating
from 1880.
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Gaussian process prediction is also well known in the geostatistics field (see,geostatistics

e.g. Matheron, 1973; Journel and Huijbregts, 1978) where it is known as krig-
ing ,17 and in meteorology [Thompson, 1956, Daley, 1991] although this litera-kriging

ture naturally has focussed mostly on two- and three-dimensional input spaces.
Whittle [1963, sec. 5.4] also suggests the use of such methods for spatial pre-
diction. Ripley [1981] and Cressie [1993] provide useful overviews of Gaussian
process prediction in spatial statistics.

Gradually it was realized that Gaussian process prediction could be used in
a general regression context. For example O’Hagan [1978] presents the general
theory as given in our equations 2.23 and 2.24, and applies it to a number of
one-dimensional regression problems. Sacks et al. [1989] describe GPR in the
context of computer experiments (where the observations y are noise free) andcomputer experiments

discuss a number of interesting directions such as the optimization of parameters
in the covariance function (see our chapter 5) and experimental design (i.e. the
choice of x-points that provide most information on f). The authors describe
a number of computer simulations that were modelled, including an example
where the response variable was the clock asynchronization in a circuit and the
inputs were six transistor widths. Santner et al. [2003] is a recent book on the
use of GPs for the design and analysis of computer experiments.

Williams and Rasmussen [1996] described Gaussian process regression inmachine learning

a machine learning context, and described optimization of the parameters in
the covariance function, see also Rasmussen [1996]. They were inspired to use
Gaussian process by the connection to infinite neural networks as described in
section 4.2.3 and in Neal [1996]. The “kernelization” of linear ridge regression
described above is also known as kernel ridge regression see e.g. Saunders et al.
[1998].

Relationships between Gaussian process prediction and regularization the-
ory, splines, support vector machines (SVMs) and relevance vector machines
(RVMs) are discussed in chapter 6.

2.9 Exercises

1. Replicate the generation of random functions from Figure 2.2. Use a
regular (or random) grid of scalar inputs and the covariance function from
eq. (2.16). Hints on how to generate random samples from multi-variate
Gaussian distributions are given in section A.2. Invent some training
data points, and make random draws from the resulting GP posterior
using eq. (2.19).

2. In eq. (2.11) we saw that the predictive variance at x∗ under the feature
space regression model was var(f(x∗)) = φ(x∗)>A−1φ(x∗). Show that
cov(f(x∗), f(x′∗)) = φ(x∗)>A−1φ(x′∗). Check that this is compatible with
the expression given in eq. (2.24).

17Matheron named the method after the South African mining engineer D. G. Krige.
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3. The Wiener process is defined for x ≥ 0 and has f(0) = 0. (See sec-
tion B.2.1 for further details.) It has mean zero and a non-stationary
covariance function k(x, x′) = min(x, x′). If we condition on the Wiener
process passing through f(1) = 0 we obtain a process known as the Brow-
nian bridge (or tied-down Wiener process). Show that this process has
covariance k(x, x′) = min(x, x′)−xx′ for 0 ≤ x, x′ ≤ 1 and mean 0. Write
a computer program to draw samples from this process at a finite grid of
x points in [0, 1].

4. Let varn(f(x∗)) be the predictive variance of a Gaussian process regres-
sion model at x∗ given a dataset of size n. The corresponding predictive
variance using a dataset of only the first n − 1 training points is de-
noted varn−1(f(x∗)). Show that varn(f(x∗)) ≤ varn−1(f(x∗)), i.e. that
the predictive variance at x∗ cannot increase as more training data is ob-
tained. One way to approach this problem is to use the partitioned matrix
equations given in section A.3 to decompose varn(f(x∗)) = k(x∗,x∗) −
k>∗ (K+σ2

nI)
−1k∗. An alternative information theoretic argument is given

in Williams and Vivarelli [2000]. Note that while this conclusion is true
for Gaussian process priors and Gaussian noise models it does not hold
generally, see Barber and Saad [1996].
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