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Chapter 3

Classification

In chapter 2 we have considered regression problems, where the targets are
real valued. Another important class of problems is classification1 problems,
where we wish to assign an input pattern x to one of C classes, C1, . . . , CC .
Practical examples of classification problems are handwritten digit recognition
(where we wish to classify a digitized image of a handwritten digit into one of
ten classes 0-9), and the classification of objects detected in astronomical sky
surveys into stars or galaxies. (Information on the distribution of galaxies in
the universe is important for theories of the early universe.) These examples
nicely illustrate that classification problems can either be binary (or two-class, binary, multi-class

C = 2) or multi-class (C > 2).

We will focus attention on probabilistic classification, where test predictions probabilistic
classificationtake the form of class probabilities; this contrasts with methods which provide

only a guess at the class label, and this distinction is analogous to the difference
between predictive distributions and point predictions in the regression setting.
Since generalization to test cases inherently involves some level of uncertainty,
it seems natural to attempt to make predictions in a way that reflects these
uncertainties. In a practical application one may well seek a class guess, which
can be obtained as the solution to a decision problem, involving the predictive
probabilities as well as a specification of the consequences of making specific
predictions (the loss function).

Both classification and regression can be viewed as function approximation
problems. Unfortunately, the solution of classification problems using Gaussian
processes is rather more demanding than for the regression problems considered
in chapter 2. This is because we assumed in the previous chapter that the
likelihood function was Gaussian; a Gaussian process prior combined with a
Gaussian likelihood gives rise to a posterior Gaussian process over functions,
and everything remains analytically tractable. For classification models, where
the targets are discrete class labels, the Gaussian likelihood is inappropriate;2 non-Gaussian likelihood

1In the statistics literature classification is often called discrimination.
2One may choose to ignore the discreteness of the target values, and use a regression

treatment, where all targets happen to be say ±1 for binary classification. This is known as
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in this chapter we treat methods of approximate inference for classification,
where exact inference is not feasible.3

Section 3.1 provides a general discussion of classification problems, and de-
scribes the generative and discriminative approaches to these problems. In
section 2.1 we saw how Gaussian process regression (GPR) can be obtained
by generalizing linear regression. In section 3.2 we describe an analogue of
linear regression in the classification case, logistic regression. In section 3.3
logistic regression is generalized to yield Gaussian process classification (GPC)
using again the ideas behind the generalization of linear regression to GPR.
For GPR the combination of a GP prior with a Gaussian likelihood gives rise
to a posterior which is again a Gaussian process. In the classification case the
likelihood is non-Gaussian but the posterior process can be approximated by a
GP. The Laplace approximation for GPC is described in section 3.4 (for binary
classification) and in section 3.5 (for multi-class classification), and the expecta-
tion propagation algorithm (for binary classification) is described in section 3.6.
Both of these methods make use of a Gaussian approximation to the posterior.
Experimental results for GPC are given in section 3.7, and a discussion of these
results is provided in section 3.8.

3.1 Classification Problems

The natural starting point for discussing approaches to classification is the
joint probability p(y,x), where y denotes the class label. Using Bayes’ theorem
this joint probability can be decomposed either as p(y)p(x|y) or as p(x)p(y|x).
This gives rise to two different approaches to classification problems. The first,
which we call the generative approach, models the class-conditional distribu-generative approach

tions p(x|y) for y = C1, . . . , CC and also the prior probabilities of each class,
and then computes the posterior probability for each class using

p(y|x) =
p(y)p(x|y)∑C

c=1 p(Cc)p(x|Cc)
. (3.1)

The alternative approach, which we call the discriminative approach, focussesdiscriminative approach

on modelling p(y|x) directly. Dawid [1976] calls the generative and discrimina-
tive approaches the sampling and diagnostic paradigms, respectively.

To turn both the generative and discriminative approaches into practical
methods we will need to create models for either p(x|y), or p(y|x) respectively.4

These could either be of parametric form, or non-parametric models such as
those based on nearest neighbours. For the generative case a simple, com-generative model

example
least-squares classification, see section 6.5.

3Note, that the important distinction is between Gaussian and non-Gaussian likelihoods;
regression with a non-Gaussian likelihood requires a similar treatment, but since classification
defines an important conceptual and application area, we have chosen to treat it in a separate
chapter; for non-Gaussian likelihoods in general, see section 9.3.

4For the generative approach inference for p(y) is generally straightforward, being esti-
mation of a binomial probability in the binary case, or a multinomial probability in the
multi-class case.
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mon choice would be to model the class-conditional densities with Gaussians:
p(x|Cc) = N (µc,Σc). A Bayesian treatment can be obtained by placing appro-
priate priors on the mean and covariance of each of the Gaussians. However,
note that this Gaussian model makes a strong assumption on the form of class-
conditional density and if this is inappropriate the model may perform poorly.

For the binary discriminative case one simple idea is to turn the output of a discriminative model
exampleregression model into a class probability using a response function (the inverse

of a link function), which “squashes” its argument, which can lie in the domain
(−∞,∞), into the range [0, 1], guaranteeing a valid probabilistic interpretation.

One example is the linear logistic regression model

p(C1|x) = λ(x>w), where λ(z) =
1

1 + exp(−z)
, (3.2)

which combines the linear model with the logistic response function. Another response function

common choice of response function is the cumulative density function of a
standard normal distribution Φ(z) =

∫ z

−∞N (x|0, 1)dx. This approach is known
as probit regression. Just as we gave a Bayesian approach to linear regression in probit regression

chapter 2 we can take a parallel approach to logistic regression, as discussed in
section 3.2. As in the regression case, this model is an important step towards
the Gaussian process classifier.

Given that there are the generative and discriminative approaches, which generative or
discriminative?one should we prefer? This is perhaps the biggest question in classification,

and we do not believe that there is a right answer, as both ways of writing the
joint p(y,x) are correct. However, it is possible to identify some strengths and
weaknesses of the two approaches. The discriminative approach is appealing
in that it is directly modelling what we want, p(y|x). Also, density estimation
for the class-conditional distributions is a hard problem, particularly when x is
high dimensional, so if we are just interested in classification then the generative
approach may mean that we are trying to solve a harder problem than we need
to. However, to deal with missing input values, outliers and unlabelled data missing values

points in a principled fashion it is very helpful to have access to p(x), and
this can be obtained from marginalizing out the class label y from the joint
as p(x) =

∑
y p(y)p(x|y) in the generative approach. A further factor in the

choice of a generative or discriminative approach could also be which one is
most conducive to the incorporation of any prior information which is available.
See Ripley [1996, sec. 2.1] for further discussion of these issues. The Gaussian
process classifiers developed in this chapter are discriminative.

3.1.1 Decision Theory for Classification

The classifiers described above provide predictive probabilities p(y∗|x∗) for a
test input x∗. However, sometimes one actually needs to make a decision and
to do this we need to consider decision theory. Decision theory for the regres-
sion problem was considered in section 2.4; here we discuss decision theory for
classification problems. A comprehensive treatment of decision theory can be
found in Berger [1985].
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Let L(c, c′) be the loss incurred by making decision c′ if the true class is Cc.
Usually L(c, c) = 0 for all c. The expected loss5 (or risk) of taking decision c′loss, risk

given x is RL(c′|x) =
∑

c L(c, c′)p(Cc|x) and the optimal decision c∗ is the one
that minimizes RL(c′|x). One common choice of loss function is the zero-one
loss, where a penalty of one unit is paid for an incorrect classification, and 0zero-one loss

for a correct one. In this case the optimal decision rule is to choose the class Cc
that maximizes6 p(Cc|x), as this minimizes the expected error at x. However,
the zero-one loss is not always appropriate. A classic example of this is theasymmetric loss

difference in loss of failing to spot a disease when carrying out a medical test
compared to the cost of a false positive on the test, so that L(c, c′) 6= L(c′, c).

The optimal classifier (using zero-one loss) is known as the Bayes classi-Bayes classifier

fier. By this construction the feature space is divided into decision regions
R1, . . . ,RC such that a pattern falling in decision region Rc is assigned to classdecision regions

Cc. (There can be more than one decision region corresponding to a single class.)
The boundaries between the decision regions are known as decision surfaces or
decision boundaries.

One would expect misclassification errors to occur in regions where the max-
imum class probability maxj p(Cj |x) is relatively low. This could be due to
either a region of strong overlap between classes, or lack of training examples
within this region. Thus one sensible strategy is to add a reject option so thatreject option

if maxj p(Cj |x) ≥ θ for a threshold θ in (0, 1) then we go ahead and classify
the pattern, otherwise we reject it and leave the classification task to a more
sophisticated system. For multi-class classification we could alternatively re-
quire the gap between the most probable and the second most probable class to
exceed θ, and otherwise reject. As θ is varied from 0 to 1 one obtains an error-
reject curve, plotting the percentage of patterns classified incorrectly against
the percentage rejected. Typically the error rate will fall as the rejection rate
increases. Hansen et al. [1997] provide an analysis of the error-reject trade-off.

We have focused above on the probabilistic approach to classification, which
involves a two-stage approach of first computing a posterior distribution over
functions and then combining this with the loss function to produce a decision.
However, it is worth noting that some authors argue that if our goal is to
eventually make a decision then we should aim to approximate the classification
function that minimizes the risk (expected loss), which is defined asrisk minimization

RL(c) =
∫
L
(
y, c(x)

)
p(y,x) dydx, (3.3)

where p(y,x) is the joint distribution of inputs and targets and c(x) is a clas-
sification function that assigns an input pattern x to one of C classes (see
e.g. Vapnik [1995, ch. 1]). As p(y,x) is unknown, in this approach one often
then seeks to minimize an objective function which includes the empirical risk∑n

i=1 L(yi, c(xi)) as well as a regularization term. While this is a reasonable

5In Economics one usually talks of maximizing expected utility rather than minimizing
expected loss; loss is negative utility. This suggests that statisticians are pessimists while
economists are optimists.

6If more than one class has equal posterior probability then ties can be broken arbitrarily.
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method, we note that the probabilistic approach allows the same inference stage
to be re-used with different loss functions, it can help us to incorporate prior
knowledge on the function and/or noise model, and has the advantage of giving
probabilistic predictions which can be helpful e.g. for the reject option.

3.2 Linear Models for Classification

In this section we briefly review linear models for binary classification, which
form the foundation of Gaussian process classification models in the next sec-
tion. We follow the SVM literature and use the labels y = +1 and y = −1 to
distinguish the two classes, although for the multi-class case in section 3.5 we
use 0/1 labels. The likelihood is

p(y=+1|x,w) = σ(x>w), (3.4)

given the weight vector w and σ(z) can be any sigmoid7 function. When using
the logistic, σ(z) = λ(z) from eq. (3.2), the model is usually called simply logistic linear logistic regression

regression, but to emphasize the parallels to linear regression we prefer the term
linear logistic regression. When using the cumulative Gaussian σ(z) = Φ(z),
we call the model linear probit regression. linear probit regression

As the probability of the two classes must sum to 1, we have p(y=−1|x,w) =
1 − p(y = +1|x,w). Thus for a data point (xi, yi) the likelihood is given by
σ(x>i w) if yi = +1, and 1 − σ(x>i w) if yi = −1. For symmetric likelihood
functions, such as the logistic or probit where σ(−z) = 1 − σ(z), this can be
written more concisely as concise notation

p(yi|xi,w) = σ(yifi), (3.5)

where fi , f(xi) = x>i w. Defining the logit transformation as logit(x) = logit

log
(
p(y=+1|x)/p(y=−1|x)

)
we see that the logistic regression model can be

written as logit(x) = x>w. The logit(x) function is also called the log odds log odds ratio

ratio. Generalized linear modelling [McCullagh and Nelder, 1983] deals with
the issue of extending linear models to non-Gaussian data scenarios; the logit
transformation is the canonical link function for binary data and this choice
simplifies the algebra and algorithms.

Given a dataset D = {(xi, yi)|i = 1, . . . , n}, we assume that the labels are
generated independently, conditional on f(x). Using the same Gaussian prior
w ∼ N (0, Σp) as for regression in eq. (2.4) we then obtain the un-normalized
log posterior

log p(w|X,y) c= −1
2
w>Σ−1

p w +
n∑

i=1

log σ(yifi). (3.6)

In the linear regression case with Gaussian noise the posterior was Gaussian
with mean and covariance as given in eq. (2.8). For classification the posterior

7A sigmoid function is a monotonically increasing function mapping from R to [0, 1]. It
derives its name from being shaped like a letter S.
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does not have a simple analytic form. However, it is easy to show that for
some sigmoid functions, such as the logistic and cumulative Gaussian, the log
likelihood is a concave function of w for fixed D. As the quadratic penalty onconcavity

w is also concave then the log posterior is a concave function, which means
that it is relatively easy to find its unique maximum. The concavity can also beunique maximum

derived from the fact that the Hessian of log p(w|X,y) is negative definite (see
section A.9 for further details). The standard algorithm for finding the maxi-
mum is Newton’s method, which in this context is usually called the iteratively
reweighted least squares (IRLS) algorithm, as described e.g. in McCullagh andIRLS algorithm

Nelder [1983]. However, note that Minka [2003] provides evidence that other
optimization methods (e.g. conjugate gradient ascent) may be faster than IRLS.

Notice that a maximum likelihood treatment (corresponding to an unpe-properties of maximum
likelihood nalized version of eq. (3.6)) may result in some undesirable outcomes. If the

dataset is linearly separable (i.e. if there exists a hyperplane which separates the
positive and negative examples) then maximizing the (unpenalized) likelihood
will cause |w| to tend to infinity, However, this will still give predictions in [0, 1]
for p(y = +1|x,w), although these predictions will be “hard” (i.e. zero or one).
If the problem is ill-conditioned, e.g. due to duplicate (or linearly dependent)
input dimensions, there will be no unique solution.

As an example, consider linear logistic regression in the case where x-space
is two dimensional and there is no bias weight so that w is also two-dimensional.
The prior in weight space is Gaussian and for simplicity we have set Σp = I.
Contours of the prior p(w) are illustrated in Figure 3.1(a). If we have a data set
D as shown in Figure 3.1(b) then this induces a posterior distribution in weight
space as shown in Figure 3.1(c). Notice that the posterior is non-Gaussian
and unimodal, as expected. The dataset is not linearly separable but a weight
vector in the direction (1, 1)> is clearly a reasonable choice, as the posterior
distribution shows. To make predictions based the training set D for a testpredictions

point x∗ we have

p(y∗=+1|x∗,D) =
∫
p(y∗=+1|w,x∗)p(w|D) dw, (3.7)

integrating the prediction p(y∗=+1|w,x∗) = σ(x>∗ w) over the posterior distri-
bution of weights. This leads to contours of the predictive distribution as shown
in Figure 3.1(d). Notice how the contours are bent, reflecting the integration
of many different but plausible w’s.

In the multi-class case we use the multiple logistic (or softmax) functionsoftmax
multiple logistic

p(y = Cc|x,W ) =
exp(x>wc)∑
c′ exp(x>wc′)

, (3.8)

where wc is the weight vector for class c, and all weight vectors are col-
lected into the matrix W . The corresponding log likelihood is of the form∑n

i=1

∑C
c=1 δc,yi [x

>
i wc − log(

∑
c′ exp(x>i wc′))]. As in the binary case the log

likelihood is a concave function of W .

It is interesting to note that in a generative approach where the class-
conditional distributions p(x|y) are Gaussian with the same covariance matrix,
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Figure 3.1: Linear logistic regression: Panel (a) shows contours of the prior distri-
bution p(w) = N (0, I). Panel (b) shows the dataset, with circles indicating class +1
and crosses denoting class −1. Panel (c) shows contours of the posterior distribution
p(w|D). Panel (d) shows contours of the predictive distribution p(y∗=+1|x∗).

p(y|x) has the form given by eq. (3.4) and eq. (3.8) for the two- and multi-class
cases respectively (when the constant function 1 is included in x).

3.3 Gaussian Process Classification

For binary classification the basic idea behind Gaussian process prediction
is very simple—we place a GP prior over the latent function f(x) and then latent function

“squash” this through the logistic function to obtain a prior on π(x) , p(y=
+1|x) = σ(f(x)). Note that π is a deterministic function of f , and since f
is stochastic, so is π. This construction is illustrated in Figure 3.2 for a one-
dimensional input space. It is a natural generalization of the linear logistic
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Figure 3.2: Panel (a) shows a sample latent function f(x) drawn from a Gaussian
process as a function of x. Panel (b) shows the result of squashing this sample func-
tion through the logistic logit function, λ(z) = (1 + exp(−z))−1 to obtain the class
probability π(x) = λ(f(x)).

regression model and parallels the development from linear regression to GP
regression that we explored in section 2.1. Specifically, we replace the linear
f(x) function from the linear logistic model in eq. (3.6) by a Gaussian process,
and correspondingly the Gaussian prior on the weights by a GP prior.

The latent function f plays the rôle of a nuisance function: we do notnuisance function

observe values of f itself (we observe only the inputs X and the class labels y)
and we are not particularly interested in the values of f , but rather in π, in
particular for test cases π(x∗). The purpose of f is solely to allow a convenient
formulation of the model, and the computational goal pursued in the coming
sections will be to remove (integrate out) f .

We have tacitly assumed that the latent Gaussian process is noise-free, andnoise-free latent process

combined it with smooth likelihood functions, such as the logistic or probit.
However, one can equivalently think of adding independent noise to the latent
process in combination with a step-function likelihood. In particular, assuming
Gaussian noise and a step-function likelihood is exactly equivalent to a noise-
free8 latent process and probit likelihood, see exercise 3.10.1.

Inference is naturally divided into two steps: first computing the distribution
of the latent variable corresponding to a test case

p(f∗|X,y,x∗) =
∫
p(f∗|X,x∗, f)p(f |X,y) df , (3.9)

where p(f |X,y) = p(y|f)p(f |X)/p(y|X) is the posterior over the latent vari-
ables, and subsequently using this distribution over the latent f∗ to produce a
probabilistic prediction

π̄∗ , p(y∗=+1|X,y,x∗) =
∫
σ(f∗)p(f∗|X,y,x∗) df∗. (3.10)

8This equivalence explains why no numerical problems arise from considering a noise-free
process if care is taken with the implementation, see also comment at the end of section 3.4.3.
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In the regression case (with Gaussian likelihood) computation of predictions was
straightforward as the relevant integrals were Gaussian and could be computed
analytically. In classification the non-Gaussian likelihood in eq. (3.9) makes
the integral analytically intractable. Similarly, eq. (3.10) can be intractable
analytically for certain sigmoid functions, although in the binary case it is
only a one-dimensional integral so simple numerical techniques are generally
adequate.

Thus we need to use either analytic approximations of integrals, or solutions
based on Monte Carlo sampling. In the coming sections, we describe two ana-
lytic approximations which both approximate the non-Gaussian joint posterior
with a Gaussian one: the first is the straightforward Laplace approximation
method [Williams and Barber, 1998], and the second is the more sophisticated
expectation propagation (EP) method due to Minka [2001]. (The cavity TAP ap-
proximation of Opper and Winther [2000] is closely related to the EP method.)
A number of other approximations have also been suggested, see e.g. Gibbs and
MacKay [2000], Jaakkola and Haussler [1999], and Seeger [2000]. Neal [1999]
describes the use of Markov chain Monte Carlo (MCMC) approximations. All
of these methods will typically scale as O(n3); for large datasets there has been
much work on further approximations to reduce computation time, as discussed
in chapter 8.

The Laplace approximation for the binary case is described in section 3.4,
and for the multi-class case in section 3.5. The EP method for binary clas-
sification is described in section 3.6. Relationships between Gaussian process
classifiers and other techniques such as spline classifiers, support vector ma-
chines and least-squares classification are discussed in sections 6.3, 6.4 and 6.5
respectively.

3.4 The Laplace Approximation for the Binary
GP Classifier

Laplace’s method utilizes a Gaussian approximation q(f |X,y) to the poste-
rior p(f |X,y) in the integral (3.9). Doing a second order Taylor expansion
of log p(f |X,y) around the maximum of the posterior, we obtain a Gaussian
approximation

q(f |X,y) = N (f |f̂ , A−1) ∝ exp
(
− 1

2 (f − f̂)>A(f − f̂)
)
, (3.11)

where f̂ = argmaxf p(f |X,y) and A = −∇∇ log p(f |X,y)|f=f̂ is the Hessian of
the negative log posterior at that point.

The structure of the rest of this section is as follows: In section 3.4.1 we
describe how to find f̂ and A. Section 3.4.2 explains how to make predictions
having obtained q(f |y), and section 3.4.3 gives more implementation details
for the Laplace GP classifier. The Laplace approximation for the marginal
likelihood is described in section 3.4.4.
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Figure 3.3: The log likelihood and its derivatives for a single case as a function of
zi = yifi, for (a) the logistic, and (b) the cumulative Gaussian likelihood. The two
likelihood functions are fairly similar, the main qualitative difference being that for
large negative arguments the log logistic behaves linearly whereas the log cumulative
Gaussian has a quadratic penalty. Both likelihoods are log concave.

3.4.1 Posterior

By Bayes’ rule the posterior over the latent variables is given by p(f |X,y) =
p(y|f)p(f |X)/p(y|X), but as p(y|X) is independent of f , we need only consider
the un-normalized posterior when maximizing w.r.t. f . Taking the logarithmun-normalized posterior

and introducing expression eq. (2.29) for the GP prior gives

Ψ(f) , log p(y|f) + log p(f |X)

= log p(y|f)− 1
2
f>K−1f − 1

2
log |K| − n

2
log 2π.

(3.12)

Differentiating eq. (3.12) w.r.t. f we obtain

∇Ψ(f) = ∇ log p(y|f)−K−1f , (3.13)

∇∇Ψ(f) = ∇∇ log p(y|f)−K−1 = −W −K−1, (3.14)

where W , −∇∇ log p(y|f) is diagonal, since the likelihood factorizes over
cases (the distribution for yi depends only on fi, not on fj 6=i). Note, that if the
likelihood p(y|f) is log concave, the diagonal elements of W are non-negative,
and the Hessian in eq. (3.14) is negative definite, so that Ψ(f) is concave and
has a unique maximum (see section A.9 for further details).

There are many possible functional forms of the likelihood, which gives the
target class probability as a function of the latent variable f . Two commonly
used likelihood functions are the logistic, and the cumulative Gaussian, seelog likelihoods

and their derivatives Figure 3.3. The expressions for the log likelihood for these likelihood functions
and their first and second derivatives w.r.t. the latent variable are given in the
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following table:

log p(yi|fi)
∂

∂fi
log p(yi|fi)

∂2

∂f2
i

log p(yi|fi)

− log
(
1 + exp(−yifi)

)
ti − πi −πi(1− πi) (3.15)

log Φ(yifi)
yiN (fi)
Φ(yifi)

− N (fi)2

Φ(yifi)2
− yifiN (fi)

Φ(yifi)
(3.16)

where we have defined πi = p(yi = 1|fi) and t = (y + 1)/2. At the maximum
of Ψ(f) we have

∇Ψ = 0 =⇒ f̂ = K
(
∇ log p(y|f̂)

)
, (3.17)

as a self-consistent equation for f̂ (but since ∇ log p(y|f̂) is a non-linear function
of f̂ , eq. (3.17) cannot be solved directly). To find the maximum of Ψ we use
Newton’s method, with the iteration Newton’s method

fnew = f − (∇∇Ψ)−1∇Ψ = f + (K−1 +W )−1(∇ log p(y|f)−K−1f)

= (K−1 +W )−1
(
W f +∇ log p(y|f)

)
. (3.18)

To gain more intuition about this update, let us consider what happens to
datapoints that are well-explained under f so that ∂ log p(yi|fi)/∂fi and Wii

are close to zero for these points. As an approximation, break f into two
subvectors, f1 that corresponds to points that are not well-explained, and f2 to
those that are. Then it is easy to show (see exercise 3.10.4) that

fnew
1 = K11(I11 +W11K11)−1

(
W11f1 +∇ log p(y1|f1)

)
,

fnew
2 = K21K

−1
11 fnew

1 ,
(3.19)

where K21 denotes the n2 × n1 block of K containing the covariance between
the two groups of points, etc. This means that fnew

1 is computed by ignoring intuition on influence of
well-explained pointsentirely the well-explained points, and fnew

2 is predicted from fnew
1 using the

usual GP prediction methods (i.e. treating these points like test points). Of
course, if the predictions of fnew

2 fail to match the targets correctly they would
cease to be well-explained and so be updated on the next iteration.

Having found the maximum posterior f̂ , we can now specify the Laplace
approximation to the posterior as a Gaussian with mean f̂ and covariance matrix
given by the negative inverse Hessian of Ψ from eq. (3.14)

q(f |X,y) = N
(
f̂ , (K−1 +W )−1

)
. (3.20)

One problem with the Laplace approximation is that it is essentially un-
controlled, in that the Hessian (evaluated at f̂) may give a poor approximation
to the true shape of the posterior. The peak could be much broader or nar-
rower than the Hessian indicates, or it could be a skew peak, while the Laplace
approximation assumes it has elliptical contours.
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3.4.2 Predictions

The posterior mean for f∗ under the Laplace approximation can be expressed
by combining the GP predictive mean eq. (2.25) with eq. (3.17) intolatent mean

Eq[f∗|X,y,x∗] = k(x∗)>K−1f̂ = k(x∗)>∇ log p(y|f̂). (3.21)

Compare this with the exact mean, given by Opper and Winther [2000] as

Ep[f∗|X,y,x∗] =
∫

E[f∗|f , X,x∗]p(f |X,y)df (3.22)

=
∫

k(x∗)>K−1f p(f |X,y)df = k(x∗)>K−1E[f |X,y],

where we have used the fact that for a GP E[f∗|f , X,x∗] = k(x∗)>K−1f and
have let E[f |X,y] denote the posterior mean of f given X and y. Notice the
similarity between the middle expression of eq. (3.21) and eq. (3.22), where the
exact (intractable) average E[f |X,y] has been replaced with the modal value
f̂ = Eq[f |X,y].

A simple observation from eq. (3.21) is that positive training examples will
give rise to a positive coefficient for their kernel function (as ∇i log p(yi|fi) > 0sign of kernel

coefficients in this case), while negative examples will give rise to a negative coefficient;
this is analogous to the solution to the support vector machine, see eq. (6.34).
Also note that training points which have ∇i log p(yi|fi) ' 0 (i.e. that are
well-explained under f̂) do not contribute strongly to predictions at novel test
points; this is similar to the behaviour of non-support vectors in the support
vector machine (see section 6.4).

We can also compute Vq[f∗|X,y], the variance of f∗|X,y under the Gaussian
approximation. This comprises of two terms, i.e.

Vq[f∗|X,y,x∗] = Ep(f∗|X,x∗,f)[(f∗ − E[f∗|X,x∗, f ])2]
+ Eq(f |X,y)[(E[f∗|X,x∗, f ]− E[f∗|X,y,x∗])2].

(3.23)

The first term is due to the variance of f∗ if we condition on a particular value
of f , and is given by k(x∗,x∗) − k(x∗)>K−1k(x∗), cf. eq. (2.19). The second
term in eq. (3.23) is due to the fact that E[f∗|X,x∗, f ] = k(x∗)>K−1f depends
on f and thus there is an additional term of k(x∗)>K−1 cov(f |X,y)K−1k(x∗).
Under the Gaussian approximation cov(f |X,y) = (K−1 +W )−1, and thuslatent variance

Vq[f∗|X,y,x∗] = k(x∗,x∗)−k>∗ K
−1k∗ + k>∗ K

−1(K−1 +W )−1K−1k∗

= k(x∗,x∗)−k>∗ (K +W−1)−1k∗, (3.24)

where the last line is obtained using the matrix inversion lemma eq. (A.9).

Given the mean and variance of f∗, we make predictions by computingaveraged predictive
probability

π̄∗ ' Eq[π∗|X,y,x∗] =
∫
σ(f∗)q(f∗|X,y,x∗) df∗, (3.25)
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where q(f∗|X,y,x∗) is Gaussian with mean and variance given by equations
3.21 and 3.24 respectively. Notice that because of the non-linear form of the
sigmoid the predictive probability from eq. (3.25) is different from the sigmoid
of the expectation of f : π̂∗ = σ(Eq[f∗|y]). We will call the latter the MAP
prediction to distinguish it from the averaged predictions from eq. (3.25). MAP prediction

In fact, as shown in Bishop [1995, sec. 10.3], the predicted test labels identical binary
decisionsgiven by choosing the class of highest probability obtained by averaged and

MAP predictions are identical for binary9 classification. To see this, note
that the decision boundary using the the MAP value Eq[f∗|X,y,x∗] corre-
sponds to σ(Eq[f∗|X,y,x∗]) = 1/2 or Eq[f∗|X,y,x∗] = 0. The decision bound-
ary of the averaged prediction, Eq[π∗|X,y,x∗] = 1/2, also corresponds to
Eq[f∗|X,y,x∗] = 0. This follows from the fact that σ(f∗) − 1/2 is antisym-
metric while q(f∗|X,y,x∗) is symmetric.

Thus if we are concerned only about the most probable classification, it is
not necessary to compute predictions using eq. (3.25). However, as soon as we
also need a confidence in the prediction (e.g. if we are concerned about a reject
option) we need Eq[π∗|X,y,x∗]. If σ(z) is the cumulative Gaussian function
then eq. (3.25) can be computed analytically, as shown in section 3.9. On
the other hand if σ is the logistic function then we need to resort to sampling
methods or analytical approximations to compute this one-dimensional integral.
One attractive method is to note that the logistic function λ(z) is the c.d.f.
(cumulative density function) corresponding to the p.d.f. (probability density
function) p(z) = sech2(z/2)/4; this is known as the logistic or sech-squared
distribution, see Johnson et al. [1995, ch. 23]. Then by approximating p(z) as a
mixture of Gaussians, one can approximate λ(z) by a linear combination of error
functions. This approximation was used by Williams and Barber [1998, app. A]
and Wood and Kohn [1998]. Another approximation suggested in MacKay
[1992d] is π̄∗ ' λ(κ(f∗|y)f̄∗), where κ2(f∗|y) = (1 + πVq[f∗|X,y,x∗]/8)−1.
The effect of the latent predictive variance is, as the approximation suggests,
to “soften” the prediction that would be obtained using the MAP prediction
π̂∗ = λ(f̄∗), i.e. to move it towards 1/2.

3.4.3 Implementation

We give implementations for finding the Laplace approximation in Algorithm
3.1 and for making predictions in Algorithm 3.2. Care is taken to avoid numer-
ically unstable computations while minimizing the computational effort; both
can be achieved simultaneously. It turns out that several of the desired terms
can be expressed in terms of the symmetric positive definite matrix

B = I +W
1
2KW

1
2 , (3.26)

computation of which costs only O(n2), since W is diagonal. The B matrix has
eigenvalues bounded below by 1 and bounded above by 1 + nmaxij(Kij)/4, so
for many covariance functions B is guaranteed to be well-conditioned, and it is

9For multi-class predictions discussed in section 3.5 the situation is more complicated.
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input: K (covariance matrix), y (±1 targets), p(y|f) (likelihood function)
2: f := 0 initialization

repeat Newton iteration
4: W := −∇∇ log p(y|f) eval. W e.g. using eq. (3.15) or (3.16)

L := cholesky(I +W
1
2KW

1
2 ) B = I +W

1
2KW

1
2

6: b := W f +∇ log p(y|f)
a := b−W 1

2L>\(L\(W 1
2Kb))

}
eq. (3.18) using eq. (3.27)

8: f := Ka
until convergence objective: − 1

2a
>f + log p(y|f)

10: log q(y|X, θ) := − 1
2a
>f + log p(y|f)−

∑
i logLii eq. (3.32)

return: f̂ := f (post. mode), log q(y|X, θ) (approx. log marg. likelihood)

Algorithm 3.1: Mode-finding for binary Laplace GPC. Commonly used convergence
criteria depend on the difference in successive values of the objective function Ψ(f)
from eq. (3.12), the magnitude of the gradient vector∇Ψ(f) from eq. (3.13) and/or the
magnitude of the difference in successive values of f . In a practical implementation
one needs to secure against divergence by checking that each iteration leads to an
increase in the objective (and trying a smaller step size if not). The computational
complexity is dominated by the Cholesky decomposition in line 5 which takes n3/6
operations (times the number of Newton iterations), all other operations are at most
quadratic in n.

thus numerically safe to compute its Cholesky decomposition LL> = B, which
is useful in computing terms involving B−1 and |B|.

The mode-finding procedure uses the Newton iteration given in eq. (3.18),
involving the matrix (K−1+W )−1. Using the matrix inversion lemma eq. (A.9)
we get

(K−1 +W )−1 = K −KW 1
2B−1W

1
2K, (3.27)

where B is given in eq. (3.26). The advantage is that whereas K may have
eigenvalues arbitrarily close to zero (and thus be numerically unstable to invert),
we can safely work with B. In addition, Algorithm 3.1 keeps the vector a =
K−1f in addition to f , as this allows evaluation of the part of the objective
Ψ(f) in eq. (3.12) which depends on f without explicit reference to K−1 (again
to avoid possible numerical problems).

Similarly, for the computation of the predictive variance Vq[f∗|y] from eq. (3.24)
we need to evaluate a quadratic form involving the matrix (K +W−1)−1. Re-
writing this as

(K +W−1)−1 = W
1
2W− 1

2 (K +W−1)−1W− 1
2W

1
2 = W

1
2B−1W

1
2 (3.28)

achieves numerical stability (as opposed to inverting W itself, which may have
arbitrarily small eigenvalues). Thus the predictive variance from eq. (3.24) can
be computed as

Vq[f∗|y] = k(x∗,x∗)− k(x∗)>W
1
2 (LL>)−1W

1
2 k(x∗)

= k(x∗,x∗)− v>v, where v = L\(W 1
2 k(x∗)),

(3.29)

which was also used by Seeger [2003, p. 27].
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input: f̂ (mode), X (inputs), y (±1 targets), k (covariance function),
p(y|f) (likelihood function), x∗ test input

2: W := −∇∇ log p(y|f̂)
L := cholesky(I +W

1
2KW

1
2 ) B = I +W

1
2KW

1
2

4: f̄∗ := k(x∗)>∇ log p(y|f̂) eq. (3.21)
v := L\

(
W

1
2 k(x∗)

)
6: V[f∗] := k(x∗,x∗)− v>v

}
eq. (3.24) using eq. (3.29)

π̄∗ :=
∫
σ(z)N (z|f̄∗,V[f∗])dz eq. (3.25)

8: return: π̄∗ (predictive class probability (for class 1))

Algorithm 3.2: Predictions for binary Laplace GPC. The posterior mode f̂ (which
can be computed using Algorithm 3.1) is input. For multiple test inputs lines 4−7 are
applied to each test input. Computational complexity is n3/6 operations once (line
3) plus n2 operations per test case (line 5). The one-dimensional integral in line 7
can be done analytically for cumulative Gaussian likelihood, otherwise it is computed
using an approximation or numerical quadrature.

In practice we compute the Cholesky decomposition LL> = B during the
Newton steps in Algorithm 3.1, which can be re-used to compute the predictive
variance by doing backsubstitution with L as discussed above. In addition,
L may again be re-used to compute |In + W

1
2KW

1
2 | = |B| (needed for the

computation of the marginal likelihood eq. (3.32)) as log |B| = 2
∑

logLii. To
save computation, one could use an incomplete Cholesky factorization in the incomplete Cholesky

factorizationNewton steps, as suggested by Fine and Scheinberg [2002].

Sometimes it is suggested that it can be useful to replace K by K+εI where
ε is a small constant, to improve the numerical conditioning10 of K. However,
by taking care with the implementation details as above this should not be
necessary.

3.4.4 Marginal Likelihood

It will also be useful (particularly for chapter 5) to compute the Laplace ap-
proximation of the marginal likelihood p(y|X). (For the regression case with
Gaussian noise the marginal likelihood can again be calculated analytically, see
eq. (2.30).) We have

p(y|X) =
∫
p(y|f)p(f |X) df =

∫
exp

(
Ψ(f)

)
df . (3.30)

Using a Taylor expansion of Ψ(f) locally around f̂ we obtain Ψ(f) ' Ψ(f̂) −
1
2 (f− f̂)>A(f− f̂) and thus an approximation q(y|X) to the marginal likelihood
as

p(y|X) ' q(y|X) = exp
(
Ψ(f̂)

) ∫
exp

(
− 1

2 (f − f̂)>A(f − f̂)
)
df . (3.31)

10Neal [1999] refers to this as adding “jitter” in the context of Markov chain Monte Carlo
(MCMC) based inference; in his work the latent variables f are explicitly represented in
the Markov chain which makes addition of jitter difficult to avoid. Within the analytical
approximations of the distribution of f considered here, jitter is unnecessary.
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This Gaussian integral can be evaluated analytically to obtain an approximation
to the log marginal likelihood

log q(y|X,θ) = − 1
2 f̂
>K−1f̂ + log p(y|f̂)− 1

2 log |B|, (3.32)

where |B| = |K| · |K−1 + W | = |In + W
1
2KW

1
2 |, and θ is a vector of hyper-

parameters of the covariance function (which have previously been suppressed
from the notation for brevity).

3.5 Multi-class Laplace Approximation∗

Our presentation follows Williams and Barber [1998]. We first introduce the
vector of latent function values at all n training points and for all C classes

f =
(
f1
1 , . . . , f

1
n, f

2
1 , . . . , f

2
n, . . . , f

C
1 , . . . , f

C
n

)>
. (3.33)

Thus f has length Cn. In the following we will generally refer to quantities
pertaining to a particular class with superscript c, and a particular case by
subscript i (as usual); thus e.g. the vector of C latents for a particular case is
fi. However, as an exception, vectors or matrices formed from the covariance
function for class c will have a subscript c. The prior over f has the form
f ∼ N (0,K). As we have assumed that the C latent processes are uncorrelated,
the covariance matrix K is block diagonal in the matrices K1, . . . ,KC . Each
individual matrix Kc expresses the correlations of the latent function values
within the class c. Note that the covariance functions pertaining to the different
classes can be different. Let y be a vector of the same length as f which for
each i = 1, . . . , n has an entry of 1 for the class which is the label for example
i and 0 for the other C − 1 entries.

Let πc
i denote output of the softmax at training point i, i.e.softmax

p(yc
i |fi) = πc

i =
exp(fc

i )∑
c′ exp(fc′

i )
. (3.34)

Then π is a vector of the same length as f with entries πc
i . The multi-classun-normalized posterior

analogue of eq. (3.12) is the log of the un-normalized posterior

Ψ(f) , − 1
2 f
>K−1f+y>f−

n∑
i=1

log
( C∑

c=1

exp fc
i

)
− 1

2 log |K|− Cn
2 log 2π. (3.35)

As in the binary case we seek the MAP value f̂ of p(f |X,y). By differentiating
eq. (3.35) w.r.t. f we obtain

∇Ψ = −K−1f + y − π. (3.36)

Thus at the maximum we have f̂ = K(y− π̂). Differentiating again, and using

− ∂2

∂f c
i ∂f

c′
i

log
∑

j

exp(f j
i ) = πc

i δcc′ + πc
iπ

c′

i , (3.37)
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we obtain11

∇∇Ψ = −K−1 −W, where W , diag(π)−ΠΠ>, (3.38)

where Π is a Cn×nmatrix obtained by stacking vertically the diagonal matrices
diag(πc), and πc is the subvector of π pertaining to class c. As in the binary case
notice that −∇∇Ψ is positive definite, thus Ψ(f) is concave and the maximum
is unique (see also exercise 3.10.2).

As in the binary case we use Newton’s method to search for the mode of Ψ,
giving

fnew = (K−1 +W )−1(W f + y − π). (3.39)

This update if coded näıvely would take O(C3n3) as matrices of size Cn have to
be inverted. However, as described in section 3.5.1, we can utilize the structure
of W to bring down the computational load to O(Cn3).

The Laplace approximation gives us a Gaussian approximation q(f |X,y) to
the posterior p(f |X,y). To make predictions at a test point x∗ we need to com- predictive

distribution for f∗pute the posterior distribution q(f∗|X,y,x∗) where f(x∗) , f∗ = (f1
∗ , . . . , f

C
∗ )>.

In general we have

q(f∗|X,y,x∗) =
∫
p(f∗|X,x∗, f)q(f |X,y) df . (3.40)

As p(f∗|X,x∗, f) and q(f |X,y) are both Gaussian, q(f∗|X,y,x∗) will also be
Gaussian and we need only compute its mean and covariance. The predictive
mean for class c is given by

Eq[fc(x∗)|X,y,x∗] = kc(x∗)>K−1
c f̂ c = kc(x∗)>(yc − π̂c), (3.41)

where kc(x∗) is the vector of covariances between the test point and each of
the training points for the cth covariance function, and f̂ c is the subvector of
f̂ pertaining to class c. The last equality comes from using eq. (3.36) at the
maximum f̂ . Note the close correspondence to eq. (3.21). This can be put into
a vector form Eq[f∗|y] = Q>∗ (y − π̂) by defining the Cn× C matrix

Q∗ =


k1(x∗) 0 . . . 0

0 k2(x∗) . . . 0
...

...
. . .

...
0 0 . . . kC(x∗)

 . (3.42)

Using a similar argument to eq. (3.23) we obtain

covq(f∗|X,y,x∗) = Σ +Q>∗ K
−1(K−1 +W )−1K−1Q∗

= diag(k(x∗,x∗))−Q>∗ (K +W−1)−1Q∗,
(3.43)

where Σ is a diagonal C×C matrix with Σcc = kc(x∗,x∗)−k>c (x∗)K−1
c kc(x∗),

and k(x∗,x∗) is a vector of covariances, whose c’th element is kc(x∗,x∗).
11There is a sign error in equation 23 of Williams and Barber [1998] but not in their

implementation.
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input: K (covariance matrix), y (0/1 targets)
2: f := 0 initialization

repeat Newton iteration
4: compute π and Π from f with eq. (3.34) and defn. of Π under eq. (3.38)

for c := 1 . . . C do
6: L := cholesky(In +D

1
2
c KcD

1
2
c )

Ec := D
1
2
c L>\(L\D

1
2
c ) E is block diag. D

1
2 (ICn +D

1
2KD

1
2 )−1D

1
2

8: zc :=
∑

i logLii compute 1
2 log determinant

end for
10: M := cholesky(

∑
cEc)

b := (D −ΠΠ>)f + y − π b = W f + y − π from eq. (3.39)
12: c := EKb

a := b−c+ERM>\(M\(R>c))

}
eq. (3.39) using eq. (3.45) and (3.47)

14: f := Ka
until convergence objective: − 1

2a
>f + y>f +

∑
i log

(∑
c exp(f i

c)
)

16: log q(y|X, θ) := − 1
2a
>f + y>f +

∑
i log

(∑
c exp(f i

c)
)
−
∑

c zc eq. (3.44)
return: f̂ := f (post. mode), log q(y|X, θ) (approx. log marg. likelihood)

Algorithm 3.3: Mode-finding for multi-class Laplace GPC, where D = diag(π), R
is a matrix of stacked identity matrices and a subscript c on a block diagonal matrix
indicates the n × n submatrix pertaining to class c. The computational complexity
is dominated by the Cholesky decomposition in lines 6 and 10 and the forward and
backward substitutions in line 7 with total complexity O((C + 1)n3) (times the num-
ber of Newton iterations), all other operations are at most O(Cn2) when exploiting
diagonal and block diagonal structures. The memory requirement is O(Cn2). For
comments on convergence criteria for line 15 and avoiding divergence, refer to the
caption of Algorithm 3.1 on page 46.

We now need to consider the predictive distribution q(π∗|y) which is ob-
tained by softmaxing the Gaussian q(f∗|y). In the binary case we saw that the
predicted classification could be obtained by thresholding the mean value of the
Gaussian. In the multi-class case one does need to take the variability around
the mean into account as it can affect the overall classification (see exercise
3.10.3). One simple way (which will be used in Algorithm 3.4) to estimate
the mean prediction Eq[π∗|y] is to draw samples from the Gaussian q(f∗|y),
softmax them and then average.

The Laplace approximation to the marginal likelihood can be obtained inmarginal likelihood

the same way as for the binary case, yielding

log p(y|X,θ) ' log q(y|X,θ) (3.44)

= − 1
2 f̂
>K−1f̂ + y>f̂ −

n∑
i=1

log
( C∑

c=1

exp f̂c
i

)
− 1

2 log |ICn +W
1
2KW

1
2 |.

As for the inversion of K−1 +W , the determinant term can be computed effi-
ciently by exploiting the structure of W , see section 3.5.1.

In this section we have described the Laplace approximation for multi-class
classification. However, there has also been some work on EP-type methods for
the multi-class case, see Seeger and Jordan [2004].
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input: K (covariance matrix), f̂ (posterior mode), x∗ (test input)
2: compute π and Π from f̂ using eq. (3.34) and defn. of Π under eq. (3.38)

for c := 1 . . . C do
4: L := cholesky(In +D

1
2
c KcD

1
2
c )

Ec := D
1
2
c L>\(L\D

1
2
c ) E is block diag. D

1
2 (ICn +D

1
2KD

1
2 )−1D

1
2

6: end for
M := cholesky(

∑
cEc)

8: for c := 1 . . . C do
µc
∗ := (yc − πc)>kc

∗ latent test mean from eq. (3.41)
10: b := Eckc

∗
c := Ec(R(M>\(M\(R>b))))

12: for c′ := 1 . . . C do
Σcc′ := c>kc′

∗
14: end for

}
latent test covariance from eq. (3.43)

Σcc := Σcc + kc(x∗,x∗)− b>kc
∗

16: end for
π∗ := 0 initialize Monte Carlo loop to estimate

18: for i := 1 : S do predictive class probabilities using S samples
f∗ ∼ N (µ∗, Σ) sample latent values from joint Gaussian posterior

20: π∗ := π∗ + exp(fc
∗)/
∑

c′ exp(fc′

∗ ) accumulate probability eq. (3.34)
end for

22: π̄∗ := π∗/S normalize MC estimate of prediction vector
return: Eq(f)[π(f(x∗))|x∗, X,y] := π̄∗ (predicted class probability vector)

Algorithm 3.4: Predictions for multi-class Laplace GPC, where D = diag(π), R is
a matrix of stacked identity matrices and a subscript c on a block diagonal matrix
indicates the n × n submatrix pertaining to class c. The computational complexity
is dominated by the Cholesky decomposition in lines 4 and 7 with a total complexity
O((C + 1)n3), the memory requirement is O(Cn2). For multiple test cases repeat
from line 8 for each test case (in practice, for multiple test cases one may reorder the
computations in lines 8-16 to avoid referring to all Ec matrices repeatedly).

3.5.1 Implementation

The implementation follows closely the implementation for the binary case de-
tailed in section 3.4.3, with the slight complications that K is now a block
diagonal matrix of size Cn × Cn and the W matrix is no longer diagonal, see
eq. (3.38). Care has to be taken to exploit the structure of these matrices to
reduce the computational burden.

The Newton iteration from eq. (3.39) requires the inversion of K−1 + W ,
which we first re-write as

(K−1 +W )−1 = K −K(K +W−1)−1K, (3.45)

using the matrix inversion lemma, eq. (A.9). In the following the inversion of
the above matrix K +W−1 is our main concern. First, however, we apply the
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matrix inversion lemma, eq. (A.9) to the W matrix:12

W−1 = (D −ΠΠ>)−1 = D−1 −R(I −R>DR)−1R>

= D−1 −RO−1R>,
(3.46)

where D = diag(π), R = D−1Π is a Cn×n matrix of stacked In unit matrices,
we use the fact that π normalizes over classes: R>DR =

∑
cDc = In and O is

the zero matrix. Introducing the above in K +W−1 and applying the matrix
inversion lemma, eq. (A.9) again we have

(K +W−1)−1 = (K +D−1 −RO−1R>)−1 (3.47)

= E − ER(O +R>ER)−1R>E = E − ER(
∑

cEc)−1R>E.

where E = (K +D−1)−1 = D
1
2 (I +D

1
2KD

1
2 )−1D

1
2 is a block diagonal matrix

and R>ER =
∑

cEc. The Newton iterations can now be computed by inserting
eq. (3.47) and (3.45) in eq. (3.39), as detailed in Algorithm 3.3. The predictions
use an equivalent route to compute the Gaussian posterior, and the final step
of deriving predictive class probabilities is done by Monte Carlo, as shown in
Algorithm 3.4.

3.6 Expectation Propagation

The expectation propagation (EP) algorithm [Minka, 2001] is a general approxi-
mation tool with a wide range of applications. In this section we present only its
application to the specific case of a GP model for binary classification. We note
that Opper and Winther [2000] presented a similar method for binary GPC
based on the fixed-point equations of the Thouless-Anderson-Palmer (TAP)
type of mean-field approximation from statistical physics. The fixed points for
the two methods are the same, although the precise details of the two algorithms
are different. The EP algorithm naturally lends itself to sparse approximations,
which will not be discussed in detail here, but touched upon in section 8.4.

The object of central importance is the posterior distribution over the latent
variables, p(f |X,y). In the following notation we suppress the explicit depen-
dence on hyperparameters, see section 3.6.2 for their treatment. The posterior
is given by Bayes’ rule, as the product of a normalization term, the prior and
the likelihood

p(f |X,y) =
1
Z
p(f |X)

n∏
i=1

p(yi|fi), (3.48)

where the prior p(f |X) is Gaussian and we have utilized the fact that the likeli-
hood factorizes over the training cases. The normalization term is the marginal
likelihood

Z = p(y|X) =
∫
p(f |X)

n∏
i=1

p(yi|fi) df . (3.49)

12Readers who are disturbed by our sloppy treatment of the inverse of singular matrices
are invited to insert the matrix (1 − ε)In between Π and Π> in eq. (3.46) and verify that
eq. (3.47) coincides with the limit ε → 0.
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So far, everything is exactly as in the regression case discussed in chapter 2.
However, in the case of classification the likelihood p(yi|fi) is not Gaussian,
a property that was used heavily in arriving at analytical solutions for the
regression framework. In this section we use the probit likelihood (see page 35)
for binary classification

p(yi|fi) = Φ(fiyi), (3.50)

and this makes the posterior in eq. (3.48) analytically intractable. To overcome
this hurdle in the EP framework we approximate the likelihood by a local like-
lihood approximation13 in the form of an un-normalized Gaussian function in
the latent variable fi

p(yi|fi) ' ti(fi|Z̃i, µ̃i, σ̃
2
i ) , Z̃iN (fi|µ̃i, σ̃

2
i ), (3.51)

which defines the site parameters Z̃i, µ̃i and σ̃2
i . Remember that the notation site parameters

N is used for a normalized Gaussian distribution. Notice that we are approxi-
mating the likelihood, i.e. a probability distribution which normalizes over the
targets yi, by an un-normalized Gaussian distribution over the latent variables
fi. This is reasonable, because we are interested in how the likelihood behaves
as a function of the latent fi. In the regression setting we utilized the Gaussian
shape of the likelihood, but more to the point, the Gaussian distribution for
the outputs yi also implied a Gaussian shape as a function of the latent vari-
able fi. In order to compute the posterior we are of course primarily interested
in how the likelihood behaves as a function of fi.14 The property that the
likelihood should normalize over yi (for any value of fi) is not simultaneously
achievable with the desideratum of Gaussian dependence on fi; in the EP ap-
proximation we abandon exact normalization for tractability. The product of
the (independent) local likelihoods ti is

n∏
i=1

ti(fi|Z̃i, µ̃i, σ̃
2
i ) = N (µ̃, Σ̃)

∏
i

Z̃i, (3.52)

where µ̃ is the vector of µ̃i and Σ̃ is diagonal with Σ̃ii = σ̃2
i . We approximate

the posterior p(f |X,y) by q(f |X,y)

q(f |X,y) ,
1

ZEP
p(f |X)

n∏
i=1

ti(fi|Z̃i, µ̃i, σ̃
2
i ) = N (µ,Σ),

with µ = ΣΣ̃−1µ̃, and Σ = (K−1 + Σ̃−1)−1, (3.53)

where we have used eq. (A.7) to compute the product (and by definition, we
know that the distribution must normalize correctly over f). Notice, that we use
the tilde-parameters µ̃ and Σ̃ (and Z̃) for the local likelihood approximations,

13Note, that although each likelihood approximation is local, the posterior approximation
produced by the EP algorithm is global because the latent variables are coupled through the
prior.

14However, for computing the marginal likelihood normalization becomes crucial, see section
3.6.2.
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and plain µ and Σ for the parameters of the approximate posterior. The nor-
malizing term of eq. (3.53), ZEP = q(y|X), is the EP algorithm’s approximation
to the normalizing term Z from eq. (3.48) and eq. (3.49).

How do we choose the parameters of the local approximating distributions
ti? One of the most obvious ideas would be to minimize the Kullback-Leibler
(KL) divergence (see section A.5) between the posterior and its approximation:KL divergence

KL
(
p(f |X,y)||q(f |X,y)

)
. Direct minimization of this KL divergence for the

joint distribution on f turns out to be intractable. (One can alternatively
choose to minimize the reversed KL divergence KL

(
q(f |X,y)||p(f |X,y)

)
with

respect to the distribution q(f |X,y); this has been used to carry out variational
inference for GPC, see, e.g. Seeger [2000].)

Instead, the key idea in the EP algorithm is to update the individual ti ap-
proximations sequentially. Conceptually this is done by iterating the following
four steps: we start from some current approximate posterior, from which we
leave out the current ti, giving rise to a marginal cavity distribution. Secondly,
we combine the cavity distribution with the exact likelihood p(yi|fi) to get the
desired (non-Gaussian) marginal. Thirdly, we choose a Gaussian approximation
to the non-Gaussian marginal, and in the final step we compute the ti which
makes the posterior have the desired marginal from step three. These four steps
are iterated until convergence.

In more detail, we optimize the ti approximations sequentially, using the
approximation so far for all the other variables. In particular the approximate
posterior for fi contains three kinds of terms:

1. the prior p(f |X)

2. the local approximate likelihoods tj for all cases j 6= i

3. the exact likelihood for case i, p(yi|fi) = Φ(yifi)

Our goal is to combine these sources of information and choose parameters of ti
such that the marginal posterior is as accurate as possible. We will first combine
the prior and the local likelihood approximations into the cavity distribution

q−i(fi) ∝
∫
p(f |X)

∏
j 6=i

tj(fj |Z̃j , µ̃j , σ̃
2
j )dfj , (3.54)

and subsequently combine this with the exact likelihood for case i. Concep-
tually, one can think of the combination of prior and the n − 1 approximate
likelihoods in eq. (3.54) in two ways, either by explicitly multiplying out the
terms, or (equivalently) by removing approximate likelihood i from the approx-
imate posterior in eq. (3.53). Here we will follow the latter approach. The
marginal for fi from q(f |X,y) is obtained by using eq. (A.6) in eq. (3.53) to
give

q(fi|X,y) = N (fi|µi, σ
2
i ), (3.55)

where σ2
i = Σii. This marginal eq. (3.55) contains one approximate term
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(namely ti) “too many”, so we need to divide it by ti to get the cavity dis- cavity distribution

tribution

q−i(fi) , N (fi|µ−i, σ
2
−i), (3.56)

where µ−i = σ2
−i(σ

−2
i µi − σ̃−2

i µ̃i), and σ2
−i = (σ−2

i − σ̃−2
i )−1.

Note that the cavity distribution and its parameters carry the subscript −i,
indicating that they include all cases except number i. The easiest way to
verify eq. (3.56) is to multiply the cavity distribution by the local likelihood
approximation ti from eq. (3.51) using eq. (A.7) to recover the marginal in
eq. (3.55). Notice that despite the appearance of eq. (3.56), the cavity mean
and variance are (of course) not dependent on µ̃i and σ̃2

i , see exercise 3.10.5.

To proceed, we need to find the new (un-normalized) Gaussian marginal
which best approximates the product of the cavity distribution and the exact
likelihood

q̂(fi) , ẐiN (µ̂i, σ̂
2
i ) ' q−i(fi)p(yi|fi). (3.57)

It is well known that when q(x) is Gaussian, the distribution q(x) which min-
imizes KL

(
p(x)||q(x)

)
is the one whose first and second moments match that

of p(x), see eq. (A.24). As q̂(fi) is un-normalized we choose additionally to
impose the condition that the zero-th moments (normalizing constants) should
match when choosing the parameters of q̂(fi) to match the right hand side of
eq. (3.57). This process is illustrated in Figure 3.4.

The derivation of the moments is somewhat lengthy, so we have moved the
details to section 3.9. The desired posterior marginal moments are

Ẑi = Φ(zi), µ̂i = µ−i +
yiσ

2
−iN (zi)

Φ(zi)
√

1 + σ2
−i

, (3.58)

σ̂2
i = σ2

−i −
σ4
−iN (zi)

(1 + σ2
−i)Φ(zi)

(
zi +

N (zi)
Φ(zi)

)
, where zi =

yiµ−i√
1 + σ2

−i

.

The final step is to compute the parameters of the approximation ti which
achieves a match with the desired moments. In particular, the product of the
cavity distribution and the local approximation must have the desired moments,
leading to

µ̃i = σ̃2
i (σ̂−2

i µ̂i − σ−2
−i µ−i), σ̃2

i = (σ̂−2
i − σ−2

−i )−1,

Z̃i = Ẑi

√
2π
√
σ2
−i + σ̃2

i exp
(

1
2 (µ−i − µ̃i)2/(σ2

−i + σ̃2
i )
)
,

(3.59)

which is easily verified by multiplying the cavity distribution by the local ap-
proximation using eq. (A.7) to obtain eq. (3.58). Note that the desired marginal
posterior variance σ̂2

i given by eq. (3.58) is guaranteed to be smaller than the
cavity variance, such that σ̃2

i > 0 is always satisfied.15

This completes the update for a local likelihood approximation ti. We then
have to update the approximate posterior using eq. (3.53), but since only a

15In cases where the likelihood is log concave, one can show that σ̃2
i > 0, but for a general

likelihood there may be no such guarantee.
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Figure 3.4: Approximating a single likelihood term by a Gaussian. Panel (a) dash-
dotted: the exact likelihood, Φ(fi) (the corresponding target being yi = 1) as a
function of the latent fi, dotted: Gaussian cavity distribution N (fi|µ−i =1, σ2

−i =9),
solid: posterior, dashed: posterior approximation. Panel (b) shows an enlargement of
panel (a).

single site has changed one can do this with a computationally efficient rank-
one update, see section 3.6.3. The EP algorithm is used iteratively, updating
each local approximation in turn. It is clear that several passes over the data
are required, since an update of one local approximation potentially influences
all of the approximate marginal posteriors.

3.6.1 Predictions

The procedure for making predictions in the EP framework closely resembles
the algorithm for the Laplace approximation in section 3.4.2. EP gives a Gaus-
sian approximation to the posterior distribution, eq. (3.53). The approximate
predictive mean for the latent variable f∗ becomes

Eq[f∗|X,y,x∗] = k>∗ K
−1µ = k>∗ K

−1(K−1 + Σ̃−1)−1Σ̃−1µ̃

= k>∗ (K + Σ̃)−1µ̃.
(3.60)

The approximate latent predictive variance is analogous to the derivation from
eq. (3.23) and eq. (3.24), with Σ̃ playing the rôle of W

Vq[f∗|X,y,x∗] = k(x∗,x∗)− k>∗ (K + Σ̃)−1k∗. (3.61)

The approximate predictive distribution for the binary target becomes

q(y∗ = 1|X,y,x∗) = Eq[π∗|X,y,x∗] =
∫

Φ(f∗)q(f∗|X,y,x∗) df∗, (3.62)

where q(f∗|X,y,x∗) is the approximate latent predictive Gaussian with mean
and variance given by eq. (3.60) and eq. (3.61). This integral is readily evaluated
using eq. (3.80), giving the predictive probability

q(y∗ = 1|X,y,x∗) = Φ
( k>∗ (K + Σ̃)−1µ̃√

1 + k(x∗,x∗)− k>∗ (K + Σ̃)−1k∗

)
. (3.63)
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3.6.2 Marginal Likelihood

The EP approximation to the marginal likelihood can be found from the nor-
malization of eq. (3.53)

ZEP = q(y|X) =
∫
p(f |X)

n∏
i=1

ti(fi|Z̃i, µ̃i, σ̃
2
i ) df . (3.64)

Using eq. (A.7) and eq. (A.8) in an analogous way to the treatment of the
regression setting in equations (2.28) and (2.30) we arrive at

log(ZEP|θ) = −1
2

log |K + Σ̃| − 1
2
µ̃>(K + Σ̃)−1µ̃ (3.65)

+
n∑

i=1

log Φ
( yiµ−i√

1 + σ2
−i

)
+

1
2

n∑
i=1

log(σ2
−i + σ̃2

i ) +
n∑

i=1

(µ−i − µ̃i)2

2(σ2
−i + σ̃2

i )
,

where θ denotes the hyperparameters of the covariance function. This expres-
sion has a nice intuitive interpretation: the first two terms are the marginal
likelihood for a regression model for µ̃, each component of which has inde-
pendent Gaussian noise of variance Σ̃ii (as Σ̃ is diagonal), cf. eq. (2.30). The
remaining three terms come from the normalization constants Z̃i. The first
of these penalizes the cavity (or leave-one-out) distributions for not agreeing
with the classification labels, see eq. (3.82). In other words, we can see that
the marginal likelihood combines two desiderata, (1) the means of the local
likelihood approximations should be well predicted by a GP, and (2) the corre-
sponding latent function, when ignoring a particular training example, should
be able to predict the corresponding classification label well.

3.6.3 Implementation

The implementation for the EP algorithm follows the derivation in the previous
section closely, except that care has to be taken to achieve numerical stability,
in similar ways to the considerations for Laplace’s method in section 3.4.3.
In addition, we wish to be able to specifically handle the case were some site
variances σ̃2

i may tend to infinity; this corresponds to ignoring the corresponding
likelihood terms, and can form the basis of sparse approximations, touched upon
in section 8.4. In this limit, everything remains well-defined, although this is
not obvious e.g. from looking at eq. (3.65). It turns out to be slightly more
convenient to use natural parameters τ̃i, ν̃i and τ−i, ν−i for the site and cavity natural parameters

parameters

τ̃i = σ̃−2
i , S̃ = diag(τ̃ ), ν̃ = S̃µ̃, τ−i = σ−2

−i , ν−i = τ−iµ−i (3.66)

rather than σ̃2
i , µ̃i and σ2

−i, µ−i themselves. The symmetric matrix of central
importance is

B = I + S̃
1
2KS̃

1
2 , (3.67)

which plays a rôle equivalent to eq. (3.26). Expressions involving the inverse of
B are computed via Cholesky factorization, which is numerically stable since
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input: K (covariance matrix), y (±1 targets)
2: ν̃ := 0, τ̃ := 0, Σ := K, µ := 0 initialization and eq. (3.53)

repeat
4: for i := 1 to n do

τ−i := σ−2
i − τ̃i compute approximate cavity para-

6: ν−i := σ−2
i µi − ν̃i

}
meters ν−i and τ−i using eq. (3.56)

compute the marginal moments µ̂i and σ̂2
i using eq. (3.58)

8: ∆τ̃ := σ̂−2
i − τ−i − τ̃i and τ̃i := τ̃i + ∆τ̃ update site parameters

ν̃i := σ̂−2
i µ̂i − ν−i

}
τ̃i and ν̃i using eq. (3.59)

10: Σ := Σ−
(
(∆τ̃)−1 + Σii

)−1
si s

>
i update Σ and µ by eq. (3.70) and

µ := Σν̃

}
eq. (3.53). si is column i of Σ

12: end for
L := cholesky(In + S̃

1
2KS̃

1
2 ) re-compute the approximate

14: V := L>\S̃ 1
2K

}
posterior parameters Σ and µ

Σ := K − V >V and µ := Σν̃ using eq. (3.53) and eq. (3.68)
16: until convergence

compute logZEP using eq. (3.65), (3.73) and (3.74) and the existing L
18: return: ν̃, τ̃ (natural site param.), logZEP (approx. log marg. likelihood)

Algorithm 3.5: Expectation Propagation for binary classification. The targets y are
used only in line 7. In lines 13-15 the parameters of the approximate posterior are
re-computed (although they already exist); this is done because of the large number of
rank-one updates in line 10 which would eventually cause loss of numerical precision
in Σ. The computational complexity is dominated by the rank-one updates in line
10, which takes O(n2) per variable, i.e. O(n3) for an entire sweep over all variables.
Similarly re-computing Σ in lines 13-15 is O(n3).

the eigenvalues of B are bounded below by one. The parameters of the Gaussian
approximate posterior from eq. (3.53) are computed as

Σ = (K−1 + S̃)−1 = K −K(K + S̃−1)−1K = K −KS̃ 1
2B−1S̃

1
2K. (3.68)

After updating the parameters of a site, we need to update the approximate
posterior eq. (3.53) taking the new site parameters into account. For the inverse
covariance matrix of the approximate posterior we have from eq. (3.53)

Σ−1 = K−1 + S̃, and thus Σ−1
new = K−1 + S̃old +(τ̃new

i − τ̃old
i )eie

>
i , (3.69)

where ei is a unit vector in direction i, and we have used that S̃ = diag(τ̃ ).
Using the matrix inversion lemma eq. (A.9), on eq. (3.69) we obtain the new Σ

Σnew = Σold − τ̃new
i − τ̃old

i

1 + (τ̃new
i − τ̃old

i )Σold
ii

sis
>
i , (3.70)

in time O(n2), where si is the i’th column of Σold. The posterior mean is then
calculated from eq. (3.53).

In the EP algorithm each site is updated in turn, and several passes over all
sites are required. Pseudocode for the EP-GPC algorithm is given in Algorithm
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input: ν̃, τ̃ (natural site param.), X (inputs), y (±1 targets),
k (covariance function), x∗ test input

2: L := cholesky(In + S̃
1
2KS̃

1
2 ) B = In + S̃

1
2KS̃

1
2

z := S̃
1
2L>\(L\(S̃ 1

2Kν̃))
4: f̄∗ := k(x∗)>(ν̃ − z)

}
eq. (3.60) using eq. (3.71)

v := L\
(
S̃

1
2 k(x∗)

)
6: V[f∗] := k(x∗,x∗)− v>v

}
eq. (3.61) using eq. (3.72)

π̄∗ := Φ(f̄∗/
√

1 + V[f∗]) eq. (3.63)
8: return: π̄∗ (predictive class probability (for class 1))

Algorithm 3.6: Predictions for expectation propagation. The natural site parameters
ν̃ and τ̃ of the posterior (which can be computed using algorithm 3.5) are input. For
multiple test inputs lines 4-7 are applied to each test input. Computational complexity
is n3/6 + n2 operations once (line 2 and 3) plus n2 operations per test case (line
5), although the Cholesky decomposition in line 2 could be avoided by storing it in
Algorithm 3.5. Note the close similarity to Algorithm 3.2 on page 47.

3.5. There is no formal guarantee of convergence, but several authors have
reported that EP for Gaussian process models works relatively well.16

For the predictive distribution, we get the mean from eq. (3.60) which is
evaluated using

Eq[f∗|X,y,x∗] = k>∗ (K + S̃−1)−1S̃−1ν̃ = k>∗
(
I − (K + S̃−1)−1K

)
ν̃

= k>∗ (I − S̃ 1
2B−1S̃

1
2K)ν̃,

(3.71)

and the predictive variance from eq. (3.61) similarly by

Vq[f∗|X,y,x∗] = k(x∗,x∗)− k>∗ (K + S̃−1)−1k∗

= k(x∗,x∗)− k>∗ S̃
1
2B−1S̃

1
2 k∗.

(3.72)

Pseudocode for making predictions using EP is given in Algorithm 3.6.

Finally, we need to evaluate the approximate log marginal likelihood from
eq. (3.65). There are several terms which need careful consideration, principally
due to the fact the τ̃i values may be arbitrarily small (and cannot safely be
inverted). We start with the fourth and first terms of eq. (3.65)

1
2 log |T−1+S̃−1| − 1

2 log |K+Σ̃| = 1
2 log |S̃−1(I+S̃T−1)| − 1

2 log |S̃−1B|

= 1
2

∑
i

log(1+τ̃iτ−1
−i )−

∑
i

logLii, (3.73)

where T is a diagonal matrix of cavity precisions Tii = τ−i = σ−2
−i and L is the

Cholesky factorization of B. In eq. (3.73) we have factored out the matrix S̃−1

from both determinants, and the terms cancel. Continuing with the part of the
16It has been conjectured (but not proven) by L. Csató (personal communication) that EP

is guaranteed to converge if the likelihood is log concave.
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fifth term from eq. (3.65) which is quadratic in µ̃ together with the second term

1
2 µ̃

>(T−1 + S̃−1)−1µ̃− 1
2 µ̃

>(K + Σ̃)−1µ̃

= 1
2 ν̃

>S̃−1
(
(T−1 + S̃−1)−1 − (K + S̃−1)−1

)
S̃−1ν̃ (3.74)

= 1
2 ν̃

>((K−1 + S̃)−1 − (T + S̃)−1
)
ν̃

= 1
2 ν̃

>(K −KS̃ 1
2B−1S̃

1
2K − (T + S̃)−1

)
ν̃,

where in eq. (3.74) we apply the matrix inversion lemma eq. (A.9) to both
parenthesis to be inverted. The remainder of the fifth term in eq. (3.65) is
evaluated using the identity

1
2µ

>
−i(T

−1 + S̃−1)−1(µ−i − 2µ̃) = 1
2µ

>
−iT (S̃ + T )−1(S̃µ−i − 2ν̃), (3.75)

where µ−i is the vector of cavity means µ−i. The third term in eq. (3.65)
requires in no special treatment and can be evaluated as written.

3.7 Experiments

In this section we present the results of applying the algorithms for GP clas-
sification discussed in the previous sections to several data sets. The purpose
is firstly to illustrate the behaviour of the methods and secondly to gain some
insights into how good the performance is compared to some other commonly-
used machine learning methods for classification.

Section 3.7.1 illustrates the action of a GP classifier on a toy binary pre-
diction problem with a 2-d input space, and shows the effect of varying the
length-scale ` in the SE covariance function. In section 3.7.2 we illustrate and
compare the behaviour of the two approximate GP methods on a simple one-
dimensional binary task. In section 3.7.3 we present results for a binary GP
classifier on a handwritten digit classification task, and study the effect of vary-
ing the kernel parameters. In section 3.7.4 we carry out a similar study using
a multi-class GP classifier to classify digits from all ten classes 0-9. In section
3.8 we discuss the methods from both experimental and theoretical viewpoints.

3.7.1 A Toy Problem

Figure 3.5 illustrates the operation of a Gaussian process classifier on a binary
problem using the squared exponential kernel with a variable length-scale and
the logistic response function. The Laplace approximation was used to make
the plots. The data points lie within the square [0, 1]2, as shown in panel (a).
Notice in particular the lone white point amongst the black points in the NE
corner, and the lone black point amongst the white points in the SW corner.

In panel (b) the length-scale is ` = 0.1, a relatively short value. In this case
the latent function is free to vary relatively quickly and so the classifications



C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.7 Experiments 61

°

°

°

•

°

°

°

°

°

•

°

•

•

•

•

•

•

°
•

•

0.25

0.5

0.5

0.5

0.75

0.25

(a) (b)

0.30.5

0.7 0.3

0.5

0.7

(c) (d)

Figure 3.5: Panel (a) shows the location of the data points in the two-dimensional
space [0, 1]2. The two classes are labelled as open circles (+1) and closed circles (-
1). Panels (b)-(d) show contour plots of the predictive probability Eq[π(x∗)|y] for
signal variance σ2

f = 9 and length-scales ` of 0.1, 0.2 and 0.3 respectively. The de-
cision boundaries between the two classes are shown by the thicker black lines. The
maximum value attained is 0.84, and the minimum is 0.19.

provided by thresholding the predictive probability Eq[π(x∗)|y] at 0.5 agrees
with the training labels at all data points. In contrast, in panel (d) the length-
scale is set to ` = 0.3. Now the latent function must vary more smoothly, and
so the two lone points are misclassified. Panel (c) was obtained with ` = 0.2.
As would be expected, the decision boundaries are more complex for shorter
length-scales. Methods for setting the hyperparameters based on the data are
discussed in chapter 5.
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Figure 3.6: One-dimensional toy classification dataset: Panel (a) shows the dataset,
where points from class +1 have been plotted at π = 1 and class −1 at π = 0, together
with the predictive probability for Laplace’s method and the EP approximation. Also
shown is the probability p(y=+1|x) of the data generating process. Panel (b) shows
the corresponding distribution of the latent function f(x), showing curves for the
mean, and ±2 standard deviations, corresponding to 95% confidence regions.

3.7.2 One-dimensional Example

Although Laplace’s method and the EP approximation often give similar re-
sults, we here present a simple one-dimensional problem which highlights some
of the differences between the methods. The data, shown in Figure 3.6(a),
consists of 60 data points in three groups, generated from a mixture of three
Gaussians, centered on −6 (20 points), 0 (30 points) and 2 (10 points), where
the middle component has label −1 and the two other components label +1; all
components have standard deviation 0.8; thus the two left-most components
are well separated, whereas the two right-most components overlap.

Both approximation methods are shown with the same value of the hyperpa-
rameters, ` = 2.6 and σf = 7.0, chosen to maximize the approximate marginal
likelihood for Laplace’s method. Notice in Figure 3.6 that there is a consid-
erable difference in the value of the predictive probability for negative inputs.
The Laplace approximation seems overly cautious, given the very clear separa-
tion of the data. This effect can be explained as a consequence of the intuition
that the influence of “well-explained data points” is effectively reduced, see the
discussion around eq. (3.19). Because the points in the left hand cluster are
relatively well-explained by the model, they don’t contribute as strongly to the
posterior, and thus the predictive probability never gets very close to 1. Notice
in Figure 3.6(b) the 95% confidence region for the latent function for Laplace’s
method actually includes functions that are negative at x = −6, which does
not seem appropriate. For the positive examples centered around x = 2 on the
right-hand side of Figure 3.6(b), this effect is not visible, because the points
around the transition between the classes at x=1 are not so “well-explained”;
this is because the points near the boundary are competing against the points
from the other class, attempting to pull the latent function in opposite di-
rections. Consequently, the datapoints in this region all contribute strongly.
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Another sign of this effect is that the uncertainty in the latent function, which
is closely related to the “effective” local density of the data, is very small in
the region around x=1; the small uncertainty reveals a high effective density,
which is caused by all data points in the region contributing with full weight. It
should be emphasized that the example was artificially constructed specifically
to highlight this effect.

Finally, Figure 3.6 also shows clearly the effects of uncertainty in the latent
function on Eq[π∗|y]. In the region between x = 2 to x = 4, the latent mean
in panel (b) increases slightly, but the predictive probability decreases in this
region in panel (a). This is caused by the increase in uncertainty for the latent
function; when the widely varying functions are squashed through the non-
linearity it is possible for both classes to get high probability, and the average
prediction becomes less extreme.

3.7.3 Binary Handwritten Digit Classification Example

Handwritten digit and character recognition are popular real-world tasks for
testing and benchmarking classifiers, with obvious application e.g. in postal
services. In this section we consider the discrimination of images of the digit
3 from images of the digit 5 as an example of binary classification; the specific
choice was guided by the experience that this is probably one of the most
difficult binary subtasks. 10-class classification of the digits 0-9 is described in
the following section.

We use the US Postal Service (USPS) database of handwritten digits which USPS dataset

consists of 9298 segmented 16 × 16 greyscale images normalized so that the
intensity of the pixels lies in [−1, 1]. The data was originally split into a training
set of 7291 cases and a testset of the remaining 2007 cases, and has often been
used in this configuration. Unfortunately, the data in the two partitions was
collected in slightly different ways, such that the data in the two sets did not
stem from the same distribution.17 Since the basic underlying assumption for
most machine learning algorithms is that the distribution of the training and
test data should be identical, the original data partitions are not really suitable
as a test bed for learning algorithms, the interpretation of the results being
hampered by the change in distribution. Secondly, the original test set was
rather small, sometimes making it difficult to differentiate the performance of
different algorithms. To overcome these two problems, we decided to pool the USPS repartitioned

two partitions and randomly split the data into two identically sized partitions
of 4649 cases each. A side-effect is that it is not trivial to compare to results
obtained using the original partitions. All experiments reported here use the
repartitioned data. The binary 3s vs. 5s data has 767 training cases, divided
406/361 on 3s vs. 5s, while the test set has 773 cases split 418/355.

We present results of both Laplace’s method and EP using identical ex- squared exponential
covariance functionperimental setups. The squared exponential covariance function k(x,x′) =

17It is well known e.g. that the original test partition had more difficult cases than the
training set.
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Figure 3.7: Binary Laplace approximation: 3s vs. 5s discrimination using the USPS
data. Panel (a) shows a contour plot of the log marginal likelihood as a function of
log(`) and log(σf ). The marginal likelihood has an optimum at log(`) = 2.85 and
log(σf ) = 2.35, with an optimum value of log p(y|X, θ) = −99. Panel (b) shows a
contour plot of the amount of information (in excess of a simple base-line model, see
text) about the test cases in bits as a function of the same variables. The statistical
uncertainty (because of the finite number of test cases) is about ±0.03 bits (95%
confidence interval). Panel (c) shows a histogram of the latent means for the training
and test sets respectively at the values of the hyperparameters with optimal marginal
likelihood (from panel (a)). Panel (d) shows the number of test errors (out of 773)
when predicting using the sign of the latent mean.

σ2
f exp(−|x − x′|2/2`2) was used, so there are two free parameters, namely σf

(the process standard deviation, which controls its vertical scaling), and the
length-scale ` (which controls the input length-scale). Let θ = (log(`), log(σf ))hyperparameters

denote the vector of hyperparameters. We first present the results of Laplace’s
method in Figure 3.7 and discuss these at some length. We then briefly compare
these with the results of the EP method in Figure 3.8.
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Figure 3.8: The EP algorithm on 3s vs. 5s digit discrimination task from the USPS
data. Panel (a) shows a contour plot of the log marginal likelihood as a function of
the hyperparameters log(`) and log(σf ). The marginal likelihood has an optimum
at log(`) = 2.6 at the maximum value of log(σf ), but the log marginal likelihood is
essentially flat as a function of log(σf ) in this region, so a good point is at log(σf ) =
4.1, where the log marginal likelihood has a value of −90. Panel (b) shows a contour
plot of the amount of information (in excess of the baseline model) about the test cases
in bits as a function of the same variables. Zero bits corresponds to no information
and one bit to perfect binary generalization. The 773 test cases allows the information
to be determined within ±0.035 bits. Panel (c) shows a histogram of the latent means
for the training and test sets respectively at the values of the hyperparameters with
optimal marginal likelihood (from panel a). Panel (d) shows the number of test errors
(out of 773) when predicting using the sign of the latent mean.

In Figure 3.7(a) we show a contour plot of the approximate log marginal Laplace results

likelihood (LML) log q(y|X,θ) as a function of log(`) and log(σf ), obtained
from runs on a grid of 17 evenly-spaced values of log(`) and 23 evenly-spaced
values of log(σf ). Notice that there is a maximum of the marginal likelihood



C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

66 Classification

near log(`) = 2.85 and log(σf ) = 2.35. As will be explained in chapter 5, we
would expect that hyperparameters that yield a high marginal likelihood would
give rise to good predictions. Notice that an increase of 1 unit on the log scale
means that the probability is 2.7 times larger, so the marginal likelihood in
Figure 3.7(a) is fairly well peaked.

There are at least two ways we can measure the quality of predictions at the
test points. The first is the test log predictive probability log2 p(y∗|x∗,D,θ).test log predictive

probability In Figure 3.7(b) we plot the average over the test set of the test log predictive
probability for the same range of hyperparameters. We express this as the
amount of information in bits about the targets, by using log to the base 2.
Further, we off-set the value by subtracting the amount of information that a
simple base-line method would achieve. As a base-line model we use the bestbase-line method

possible model which does not use the inputs; in this case, this model would
just produce a predictive distribution reflecting the frequency of the two classes
in the training set, i.e.

−418/773 log2(406/767)− 355/773 log2(361/767) = 0.9956 bits, (3.76)

essentially 1 bit. (If the classes had been perfectly balanced, and the training
and test partitions also exactly balanced, we would arrive at exactly 1 bit.)
Thus, our scaled information score used in Figure 3.7(b) would be zero for a
method that did random guessing and 1 bit for a method which did perfect
classification (with complete confidence). The information score measures howinterpretation of

information score much information the model was able to extract from the inputs about the
identity of the output. Note that this is not the mutual information between
the model output and the test targets, but rather the Kullback-Leibler (KL)
divergence between them. Figure 3.7 shows that there is a good qualitative
agreement between the marginal likelihood and the test information, compare
panels (a) and (b).

The second (and perhaps most commonly used) method for measuring the
quality of the predictions is to compute the number of test errors made whenerror rate

using the predictions. This is done by computing Eq[π∗|y] (see eq. (3.25)) for
each test point, thresholding at 1/2 to get “hard” predictions and counting the
number of errors. Figure 3.7(d) shows the number of errors produced for each
entry in the 17× 23 grid of values for the hyperparameters. The general trend
in this table is that the number of errors is lowest in the top left-hand corner
and increases as one moves right and downwards. The number of errors rises
dramatically in the far bottom righthand corner. However, note in general that
the number of errors is quite small (there are 773 cases in the test set).

The qualitative differences between the two evaluation criteria depicted in
Figure 3.7 panels (b) and (d) may at first sight seem alarming. And although
panels (a) and (b) show similar trends, one may worry about using (a) to select
the hyperparameters, if one is interested in minimizing the test misclassification
rate. Indeed a full understanding of all aspects of these plots is quite involved,
but as the following discussion suggests, we can explain the major trends.

First, bear in mind that the effect of increasing ` is to make the kernel
function broader, so we might expect to observe effects like those in Figure 3.5
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where large widths give rise to a lack of flexibility. Keeping ` constant, the
effect of increasing σf is to increase the magnitude of the values obtained for
f̂ . By itself this would lead to “harder” predictions (i.e. predictive probabilities
closer to 0 or 1), but we have to bear in mind that the variances associated
will also increase and this increased uncertainty for the latent variables tends
to “soften” the predictive probabilities, i.e. move them closer to 1/2.

The most marked difference between Figure 3.7(b) and (d) is the behaviour
in the the top left corner, where classification error rate remains small, but
the test information and marginal likelihood are both poor. In the left hand
side of the plots, the length scale ` is very short. This causes most points to
be deemed “far away” from most other points. In this regime the prediction
is dominated by the class-label of the nearest neighbours, and for the task at
hand, this happens to give a low misclassification rate. In this parameter region
the test latent variables f∗ are very close to zero, corresponding to probabilities
very close to 1/2. Consequently, the predictive probabilities carry almost no
information about the targets. In the top left corner, the predictive probabilities
for all 773 test cases lie in the interval [0.48, 0.53]. Notice that a large amount
of information implies a high degree of correct classification, but not vice versa.
At the optimal marginal likelihood values of the hyperparameters, there are 21
misclassifications, which is slightly higher that the minimum number attained
which is 15 errors.

In exercise 3.10.6 readers are encouraged to investigate further the behaviour
of f̂ and the predictive probabilities etc. as functions of log(`) and log(σf ) for
themselves.

In Figure 3.8 we show the results on the same experiment, using the EP EP results

method. The findings are qualitatively similar, but there are significant dif-
ferences. In panel (a) the approximate log marginal likelihood has a different
shape than for Laplace’s method, and the maximum of the log marginal likeli-
hood is about 9 units on a natural log scale larger (i.e. the marginal probability
is exp(9) ' 8000 times higher). Also note that the marginal likelihood has a
ridge (for log ` = 2.6) that extends into large values of log σf . For these very
large latent amplitudes (see also panel (c)) the probit likelihood function is well
approximated by a step function (since it transitions from low to high values
in the domain [−3, 3]). Once we are in this regime, it is of course irrelevant
exactly how large the magnitude is, thus the ridge. Notice, however, that this
does not imply that the prediction will always be “hard”, since the variance of
the latent function also grows.

Figure 3.8 shows a good qualitative agreement between the approximate
log marginal likelihood and the test information, compare panels (a) and (b).
The best value of the test information is significantly higher for EP than for
Laplace’s method. The classification error rates in panel (d) show a fairly
similar behaviour to that of Laplace’s method. In Figure 3.8(c) we show the
latent means for training and test cases. These show a clear separation on
the training set, and much larger magnitudes than for Laplace’s method. The
absolute values of the entries in f∗ are quite large, often well in excess of 50,
which may suggest very “hard” predictions (probabilities close to zero or one),
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Figure 3.9: MAP vs. averaged predictions for the EP algorithm for the 3’s vs. 5’s
digit discrimination using the USPS data. The optimal values of the hyperparameters
from Figure 3.8(a) log(`) = 2.6 and log(σf ) = 4.1 are used. The MAP predictions
σ(Eq[f∗|y]) are “hard”, mostly being very close to zero or one. On the other hand,
the averaged predictions Eq[π∗|y] from eq. (3.25) are a lot less extreme. In panel (a)
the 21 cases that were misclassified are indicated by crosses (correctly classified cases
are shown by points). Note that only 4 of the 21 misclassified points have confident
predictions (i.e. outside [0.1, 0.9]). Notice that all points fall in the triangles below
and above the horizontal line, confirming that averaging does not change the “most
probable” class, and that it always makes the probabilities less extreme (i.e. closer to
1/2). Panel (b) shows histograms of averaged and MAP predictions, where we have
truncated values over 30.

since the sigmoid saturates for smaller arguments. However, when taking the
uncertainties in the latent variables into account, and computing the predictions
using averaging as in eq. (3.25) the predictive probabilities are “softened”. In
Figure 3.9 we can verify that the averaged predictive probabilities are much less
extreme than the MAP predictions.

In order to evaluate the performance of the two approximate methods for
GP classification, we compared to a linear probit model, a support vector ma-
chine, a least-squares classifier and a nearest neighbour approach, all of which
are commonly used in the machine learning community. In Figure 3.10 we showerror-reject curve

error-reject curves for both misclassification rate and the test information mea-
sure. The error-reject curve shows how the performance develops as a function
of the fraction of test cases that is being rejected. To compute these, we first
modify the methods that do not naturally produce probabilistic predictions to
do so, as described below. Based on the predictive probabilities, we reject test
cases for which the maximum predictive probability is smaller than a threshold.
Varying the threshold produces the error-reject curve.

The GP classifiers applied in Figure 3.10 used the hyperparameters which
optimized the approximate marginal likelihood for each of the two methods.
For the GP classifiers there were two free parameters σf and `. The linear pro-
bit model (linear logistic models are probably more common, but we chose thelinear probit model

probit here, since the other likelihood based methods all used probit) can be
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Figure 3.10: Panel (a) shows the error-reject curve and panel (b) the amount of
information about the test cases as a function of the rejection rate. The probabilistic
one nearest neighbour (P1NN) method has much worse performance than the other
methods. Gaussian processes with EP behaves similarly to SVM’s although the clas-
sification rate for SVM for low rejection rates seems to be a little better. Laplace’s
method is worse than EP and SVM. The GP least squares classifier (LSC) described
in section 6.5 performs the best.

implemented as GP model using Laplace’s method, which is equivalent to (al-
though not computationally as efficient as) iteratively reweighted least squares
(IRLS). The covariance function k(x,x′) = θ2x>x′ has a single hyperparam-
eter, θ, which was set by maximizing the log marginal likelihood. This gives
log p(y|X, θ) = −105, at θ = 2.0, thus the marginal likelihood for the linear
covariance function is about 6 units on a natural log scale lower than the max-
imum log marginal likelihood for the Laplace approximation using the squared
exponential covariance function.

The support vector machine (SVM) classifier (see section 6.4 for further de- support vector machine

tails on the SVM) used the same SE kernel as the GP classifiers. For the SVM
the rôle of ` is identical, and the trade-off parameter C in the SVM formulation
(see eq. (6.37)) plays a similar rôle to σ2

f . We carried out 5-fold cross validation
on a grid in parameter space to identify the best combination of parameters
w.r.t. the error rate; this turned out to be at C = 1, ` = 10. Our experiments
were conducted using the SVMTorch software [Collobert and Bengio, 2001].
In order to compute probabilistic predictions, we squashed the test-activities
through a cumulative Gaussian, using the methods proposed by Platt [2000]:
we made a parameterized linear transformation of the test-activities and fed
this through the cumulative Gaussian.18 The parameters of the linear trans-
formation were chosen to maximize the log predictive probability, evaluated on
the hold-out sets of the 5-fold cross validation.

The probabilistic one nearest neighbour (P1NN) method is a simple nat- probabilistic
one nearest neighbourural extension to the classical one nearest neighbour method which provides

probabilistic predictions. It computes the leave-one-out (LOO) one nearest
neighbour prediction on the training set, and records the fraction of cases π
where the LOO predictions were correct. On test cases, the method then pre-

18Platt [2000] used a logistic whereas we use a cumulative Gaussian.
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dicts the one nearest neighbour class with probability π, and the other class
with probability 1−π. Rejections are based on thresholding on the distance to
the nearest neighbour.

The least-squares classifier (LSC) is described in section 6.5. In order to
produce probabilistic predictions, the method of Platt [2000] was used (as de-
scribed above for the SVM) using the predictive means only (the predictive
variances were ignored19), except that instead of the 5-fold cross validation,
leave-one-out cross-validation (LOO-CV) was used, and the kernel parameters
were also set using LOO-CV.

Figure 3.10 shows that the three best methods are the EP approximation for
GPC, the SVM and the least-squares classifier (LSC). Presenting both the error
rates and the test information helps to highlight differences which may not be
apparent from a single plot alone. For example, Laplace’s method and EP seem
very similar on error rates, but quite different in test information. Notice also,
that the error-reject curve itself reveals interesting differences, e.g. notice that
although the P1NN method has an error rate comparable to other methods at
zero rejections, things don’t improve very much when rejections are allowed.
Refer to section 3.8 for more discussion of the results.

3.7.4 10-class Handwritten Digit Classification Example

We apply the multi-class Laplace approximation developed in section 3.5 to the
10-class handwritten digit classification problem from the (repartitioned) USPS
dataset, having n = 4649 training cases and n∗ = 4649 cases for testing, see
page 63. We used a squared exponential covariance function with two hyper-
parameters: a single signal amplitude σf , common to all 10 latent functions,
and a single length-scale parameter `, common to all 10 latent functions and
common to all 256 input dimensions.

The behaviour of the method was investigated on a grid of values for the
hyperparameters, see Figure 3.11. Note that the correspondence between the
log marginal likelihood and the test information is not as close as for Laplace’s
method for binary classification in Figure 3.7 on page 64. The maximum value
of the log marginal likelihood attained is -1018, and for the hyperparameters
corresponding to this point the error rate is 3.1% and the test information
2.67 bits. As with the binary classification problem, the test information is
standardized by subtracting off the negative entropy (information) of the targets
which is −3.27 bits. The classification error rate in Figure 3.11(c) shows a clear
minimum, and this is also attained at a shorter length-scale than where the
marginal likelihood and test information have their maxima. This effect was
also seen in the experiments on binary classification.

To gain some insight into the level of performance we compared these re-
sults with those obtained with the probabilistic one nearest neighbour method
P1NN, a multiple logistic regression model and a SVM. The P1NN first uses an

19Of course, one could also have tried a variant where the full latent predictive distribution
was averaged over, but we did not do that here.
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Figure 3.11: 10-way digit classification using the Laplace approximation. Panel
(a) shows the approximate log marginal likelihood, reaching a maximum value of
log p(y|X, θ) = −1018 at log ` = 2.35 and log σf = 2.6. In panel (b) information
about the test cases is shown. The maximum possible amount of information about
the test targets, corresponding to perfect classification, would be 3.27 bits (the entropy
of the targets). At the point of maximum marginal likelihood, the test information is
2.67 bits. In panel (c) the test set misclassification rate is shown in percent. At the
point of maximum marginal likelihood the test error rate is 3.1%.

internal leave-one-out assessment on the training set to estimate its probabil-
ity of being correct, π. For the test set it then predicts the nearest neighbour
with probability π and all other classes with equal probability (1 − π)/9. We
obtained π = 0.967, a test information of 2.98 bits and a test set classification
error rate of 3.0%.

We also compare to multiple linear logistic regression. One way to imple-
ment this method is to view it as a Gaussian process with a linear covariance
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function, although it is equivalent and computationally more efficient to do the
Laplace approximation over the “weights” of the linear model. In our case there
are 10×257 weights (256 inputs and one bias), whereas there are 10×4696 latent
function values in the GP. The linear covariance function k(x,x′) = θ2x>x′ has
a single hyperparameter θ (used for all 10 latent functions). Optimizing the log
marginal likelihood w.r.t. θ gives log p(y|X, θ) = −1339 at θ = 1.45. Using this
value for the hyperparameter, the test information is 2.95 bits and the test set
error rate is 5.7%.

Finally, a support vector machine (SVM) classifier was trained using the
same SE kernel as the Gaussian process classifiers. (See section 6.4 for further
details on the SVM.) As in the binary SVM case there were two free parameters
` (the length-scale of the kernel), and the trade-off parameter C (see eq. (6.37)),
which plays a similar rôle to σ2

f . We carried out 5-fold cross-validation on a grid
in parameter space to identify the best combination of parameters w.r.t. the
error rate; this turned out to be at C = 1, ` = 5. Our experiments were
conducted using the SVMTorch software [Collobert and Bengio, 2001], which
implements multi-class SVM classification using the one-versus-rest method de-
scribed in section 6.5. The test set error rate for the SVM is 2.2%; we did not
attempt to evaluate the test information for the multi-class SVM.

3.8 Discussion

In the previous section we presented several sets of experiments comparing the
two approximate methods for inference in GPC models, and comparing them to
other commonly-used supervised learning methods. In this section we discuss
the results and attempt to relate them to the properties of the models.

For the binary examples from Figures 3.7 and 3.8, we saw that the two ap-
proximations showed quite different qualitative behaviour of the approximated
log marginal likelihood, although the exact marginal likelihood is of course iden-
tical. The EP approximation gave a higher maximum value of the log marginal
likelihood (by about 9 units on the log scale) and the test information was
somewhat better than for Laplace’s method, although the test set error rates
were comparable. However, although this experiment seems to favour the EP
approximation, it is interesting to know how close these approximations are to
the exact (analytically intractable) solutions. In Figure 3.12 we show the resultsMonte Carlo results

of running a sophisticated Markov chain Monte Carlo method called Annealed
Importance Sampling [Neal, 2001] carried out by Kuss and Rasmussen [2005].
The USPS dataset for these experiments was identical to the one used in Fig-
ures 3.7 and 3.8, so the results are directly comparable. It is seen that the
MCMC results indicate that the EP method achieves a very high level of accu-
racy, i.e. that the difference between EP and Laplace’s method is caused almost
exclusively by approximation errors in Laplace’s method.

The main reason for the inaccuracy of Laplace’s method is that the high
dimensional posterior is skew, and that the symmetric approximation centered
on the mode is not characterizing the posterior volume very well. The posterior
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Figure 3.12: The log marginal likelihood, panel (a), and test information, panel
(b), for the USPS 3’s vs. 5’s binary classification task computed using Markov chain
Monte Carlo (MCMC). Comparing this to the Laplace approximation Figure 3.7 and
Figure 3.8 shows that the EP approximation is surprisingly accurate. The slight
wiggliness of the contour lines are caused by finite sample effects in the MCMC runs.

is a combination of the (correlated) Gaussian prior centered on the origin and
the likelihood terms which (softly) cut off half-spaces which do not agree with
the training set labels. Therefore the posterior looks like a correlated Gaussian
restricted to the orthant which agrees with the labels. Its mode will be located
close to the origin in that orthant, and it will decrease rapidly in the direction
towards the origin due to conflicts from the likelihood terms, and decrease only
slowly in the opposite direction (because of the prior). Seen in this light it is
not surprising that the Laplace approximation is somewhat inaccurate. This
explanation is corroborated further by Kuss and Rasmussen [2005].

It should be noted that all the methods compared on the binary digits clas-
sification task except for the linear probit model are using the squared distance
between the digitized digit images measured directly in the image space as the suitablility of the

covariance functionsole input to the algorithm. This distance measure is not very well suited for
the digit discrimination task—for example, two similar images that are slight
translations of each other may have a huge squared distance, although of course
identical labels. One of the strengths of the GP formalism is that one can use
prior distributions over (latent, in this case) functions, and do inference based
on these. If however, the prior over functions depends only on one particular as-
pect of the data (the squared distance in image space) which is not so well suited
for discrimination, then the prior used is also not very appropriate. It would be
more interesting to design covariance functions (parameterized by hyperparame-
ters) which are more appropriate for the digit discrimination task, e.g. reflecting
on the known invariances in the images, such as the “tangent-distance” ideas
from Simard et al. [1992]; see also Schölkopf and Smola [2002, ch. 11] and section
9.10. The results shown here follow the common approach of using a generic
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covariance function with a minimum of hyperparameters, but this doesn’t allow
us to incorporate much prior information about the problem. For an example
in the GP framework for doing inference about multiple hyperparameters with
more complex covariance functions which provide clearly interpretable infor-
mation about the data, see the carbon dioxide modelling problem discussed on
page 118.

3.9 Appendix: Moment Derivations∗

Consider the integral of a cumulative Gaussian, Φ, with respect to a Gaussian

Z =
∫ ∞

−∞
Φ
(x−m

v

)
N (x|µ, σ2) dx, where Φ(x) =

∫ x

−∞
N (y) dy, (3.77)

initially for the special case v>0. Writing out in full, substituting z = y − x+
µ−m and w = x− µ and interchanging the order of the integrals

Zv>0 =
1

2πσv

∫ ∞

−∞

∫ x

−∞
exp

(
− (y −m)2

2v2
− (x− µ)2

2σ2

)
dy dx

=
1

2πσv

∫ µ−m

−∞

∫ ∞

−∞
exp

(
− (z + w)2

2v2
− w2

2σ2

)
dw dz,

(3.78)

or in matrix notation

Zv>0 =
1

2πσv

∫ µ−m

−∞

∫ ∞

−∞
exp

(
− 1

2

[
w
z

]> [ 1
v2 + 1

σ2
1
v2

1
v2

1
v2

] [
w
z

] )
dw dz

=
∫ µ−m

−∞

∫ ∞

−∞
N
([
w
z

]∣∣∣ 0, [ σ2 −σ2

−σ2 v2 + σ2

])
dw dz, (3.79)

i.e. an (incomplete) integral over a joint Gaussian. The inner integral corre-
sponds to marginalizing over w (see eq. (A.6)), yielding

Zv>0 =
1√

2π(v2 + σ2)

∫ µ−m

−∞
exp

(
− z2

2(v2 + σ2)

)
dz = Φ

( µ−m√
v2 + σ2

)
,

(3.80)
which assumed v > 0. If v is negative, we can substitute the symmetry Φ(−z) =
1− Φ(z) into eq. (3.77) to get

Zv<0 = 1− Φ
( µ−m√

v2 + σ2

)
= Φ

(
− µ−m√

v2 + σ2

)
. (3.81)

Collecting the two cases, eq. (3.80) and eq. (3.81) we arrive at

Z =
∫

Φ
(x−m

v

)
N (x|µ, σ2) dx = Φ(z), where z =

µ−m
v
√

1 + σ2/v2
, (3.82)

for general v 6= 0. We wish to compute the moments of

q(x) = Z−1Φ
(x−m

v

)
N (x|µ, σ2), (3.83)
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where Z is given in eq. (3.82). Perhaps the easiest way to do this is to differ-
entiate w.r.t. µ on both sides of eq. (3.82)

∂Z

∂µ
=
∫
x− µ
σ2

Φ
(x−m

v

)
N (x|µ, σ2) dx =

∂

∂µ
Φ(z) ⇐⇒ (3.84)

1
σ2

∫
xΦ
(x−m

v

)
N (x|µ, σ2) dx− µZ

σ2
=

N (z)

v
√

1 + σ2/v2
,

where we have used ∂Φ(z)/∂µ = N (z)∂z/∂µ. We recognize the first term in
the integral in the top line of eq. (3.84) as Z/σ2 times the first moment of q
which we are seeking. Multiplying through by σ2/Z and rearranging we obtain first moment

Eq[x] = µ+
σ2N (z)

Φ(z)v
√

1 + σ2/v2
. (3.85)

Similarly, the second moment can be obtained by differentiating eq. (3.82) twice

∂2Z

∂µ2
=
∫ [x2

σ4
− 2µx

σ4
+
µ2

σ4
− 1
σ2

]
Φ
(x−m

v

)
N (x|µ, σ2) dx = − zN (z)

v2 + σ2

⇐⇒ Eq[x2] = 2µEq[x]− µ2 + σ2 − σ4zN (z)
Φ(z)(v2 + σ2)

, (3.86)

where the first and second terms of the integral in the top line of eq. (3.86) are
multiples of the first and second moments. The second central moment after
reintroducing eq. (3.85) into eq. (3.86) and simplifying is given by second moment

Eq

[
(x−Eq[x])2

]
= Eq[x2]−Eq[x]2 = σ2− σ4N (z)

(v2 + σ2)Φ(z)

(
z+
N (z)
Φ(z)

)
. (3.87)

3.10 Exercises

1. For binary GPC, show the equivalence of using a noise-free latent process
combined with a probit likelihood and a latent process with Gaussian
noise combined with a step-function likelihood. Hint: introduce explicitly
additional noisy latent variables f̃i, which differ from fi by Gaussian noise.
Write down the step function likelihood for a single case as a function of
f̃i, integrate out the noisy variable, to arrive at the probit likelihood as a
function of the noise-free process.

2. Consider a multinomial random variable y having C states, with yc = 1 if
the variable is in state c, and 0 otherwise. State c occurs with probability
πc. Show that cov(y) = E[(y − π)(y − π)>] = diag(π) − ππ>. Ob-
serve that cov(y), being a covariance matrix, must necessarily be positive
semidefinite. Using this fact show that the matrix W = diag(π) − ΠΠ>

from eq. (3.38) is positive semidefinite. By showing that the vector of all
ones is an eigenvector of cov(y) with eigenvalue zero, verify that the ma-
trix is indeed positive semidefinite, and not positive definite. (See section
4.1 for definitions of positive semidefinite and positive definite matrices.)
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Figure 3.13: The decision regions for the three-class softmax function in z2-z3 space.

3. Consider the 3-class softmax function

p(Cc) =
exp(fc)

exp(f1) + exp(f2) + exp(f3)
,

where c = 1, 2, 3 and f1, f2, f3 are the corresponding activations. To
more easily visualize the decision boundaries, let z2 = f2 − f1 and z3 =
f3 − f1. Thus

p(C1) =
1

1 + exp(z2) + exp(z3)
, (3.88)

and similarly for the other classes. The decision boundary relating to
p(C1) > 1/3 is the curve exp(z2) + exp(z3) = 2. The decision regions for
the three classes are illustrated in Figure 3.13. Let f = (f1, f2, f3)> have
a Gaussian distribution centered on the origin, and let π(f) = softmax(f).
We now consider the effect of this distribution on π̄ =

∫
π(f)p(f) df . For

a Gaussian with given covariance structure this integral is easily approxi-
mated by drawing samples from p(f). Show that the classification can be
made to fall into any of the three categories depending on the covariance
matrix. Thus, by considering displacements of the mean of the Gaussian
by ε from the origin into each of the three regions we have shown that
overall classification depends not only on the mean of the Gaussian but
also on its covariance. Show that this conclusion is still valid when it is
recalled that z is derived from f as z = T f where

T =
(

1 0 −1
0 1 −1

)
,

so that cov(z) = T cov(f)T>.

4. Consider the update equation for fnew given by eq. (3.18) when some of
the training points are well-explained under f so that ti ' πi and Wii ' 0



C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.10 Exercises 77

for these points. Break f into two subvectors, f1 that corresponds to
points that are not well-explained, and f2 to those that are. Re-write
(K−1 +W )−1 from eq. (3.18) as K(I +WK)−1 and let K be partitioned
as K11, K12, K21, K22 and similarly for the other matrices. Using the
partitioned matrix inverse equations (see section A.3) show that

fnew
1 = K11(I11 +W11K11)−1

(
W11f1 +∇ log p(y1|f1)

)
,

fnew
2 = K21K

−1
11 fnew

1 .
(3.89)

See section 3.4.1 for the consequences of this result.

5. Show that the expressions in eq. (3.56) for the cavity mean µ−i and vari-
ance σ2

−i do not depend on the approximate likelihood terms µ̃i and σ̃2
i

for the corresponding case, despite the appearance of eq. (3.56).

6. Consider the USPS 3s vs. 5s prediction problem discussed in section 3.7.3.
Use the implementation of the Laplace binary GPC provided to investi-
gate how f̂ and the predictive probabilities etc. vary as functions of log(`)
and log(σf ).
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