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Chapter 6

Relationships between GPs
and Other Models

In this chapter we discuss a number of concepts and models that are related to
Gaussian process prediction. In section 6.1 we cover reproducing kernel Hilbert
spaces (RKHSs), which define a Hilbert space of sufficiently-smooth functions
corresponding to a given positive semidefinite kernel k.

As we discussed in chapter 1, there are many functions that are consistent
with a given dataset D. We have seen how the GP approach puts a prior
over functions in order to deal with this issue. A related viewpoint is provided
by regularization theory (described in section 6.2) where one seeks a trade-off
between data-fit and the RKHS norm of function. This is closely related to the
MAP estimator in GP prediction, and thus omits uncertainty in predictions
and also the marginal likelihood. In section 6.3 we discuss splines, a special
case of regularization which is obtained when the RKHS is defined in terms of
differential operators of a given order.

There are a number of other families of kernel machines that are related
to Gaussian process prediction. In section 6.4 we describe support vector ma-
chines, in section 6.5 we discuss least-squares classification (LSC), and in section
6.6 we cover relevance vector machines (RVMs).

6.1 Reproducing Kernel Hilbert Spaces

Here we present a brief introduction to reproducing kernel Hilbert spaces. The
theory was developed by Aronszajn [1950]; a more recent treatise is Saitoh
[1988]. Information can also be found in Wahba [1990], Schélkopf and Smola
[2002] and Wegman [1982]. The collection of papers edited by Weinert [1982]
provides an overview of the uses of RKHSs in statistical signal processing.
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reproducing property

inner product

(f, 9)n

We start with a formal definition of a RKHS, and then describe two specific
bases for a RKHS, firstly through Mercer’s theorem and the eigenfunctions of
k, and secondly through the reproducing kernel map.

Definition 6.1 (Reproducing kernel Hilbert space). Let H be a Hilbert space
of real functions f defined on an index set X. Then H is called a reproducing
kernel Hilbert space endowed with an inner product (-,-)x (and norm || f|lx =

VAT, [)n) if there exists a function k : X x X — R with the following properties:

1. for every x, k(x,x) as a function of X' belongs to H, and

2. k has the reproducing property (f(-), k(-,x))x = f(x). O
See e.g. Scholkopf and Smola [2002] and Wegman [1982]. Note also that as
k(x,-) and k(x’,-) are in H we have that (k(x,-), k(X ))x = k(x,x).

The RKHS uniquely determines k, and vice versa, as stated in the following
theorem:

Theorem 6.1 (Moore-Aronszagn theorem, Aronszajn [1950]). Let X be an in-
dex set. Then for every positive definite function k(-,-) on X x X there exists

a unique RKHS, and vice versa. (|
The Hilbert space Ly (which has the dot product (f,g) f flx

contains many non-smooth functions. In Lo (Wthh is not a RKHS) the delta

function is the representer of evaluation, i.e. f(x) = [ f(x —x')dx’. Kernels

are the analogues of delta functions within the smoother RKHS. Note that the
delta function is not itself in Ls; in contrast for a RKHS the kernel k is the
representer of evaluation and is itself in the RKHS.

The above description is perhaps rather abstract. For our purposes the key
intuition behind the RKHS formalism is that the squared norm || f||3, can be
thought of as a generalization to functions of the n-dimensional quadratic form
fTK~1'f we have seen in earlier chapters.

Consider a real positive semidefinite kernel k(x,x’) with an eigenfunction
expansion k(x,x’) = Ei]\il)\i@(x)@(x’) relative to a measure p. Recall from
Mercer’s theorem that the eigenfunctions are orthonormal w.r.t. p, i.e. we have
J ¢i(x)¢;j(x) dpu(x) = 6;;. We now consider a Hllbert space comprlsed of linear
combinations of the eigenfunctions, i.e. f(x) = Zl 1 fidi(x) with Zl JEIN <
0o. We assert that the inner product (f,g)s in the Hilbert space between
functions f(x) and g(x) = Zﬁilgi@(x) is defined as

Y figs
= ZT (6.1)
i=1

Thus this Hilbert space is equipped with a norm || f | where || f||?, = (f, f)» =
ZZ 1f2/Xi. Note that for |||l to be finite the sequence of coefficients {f;}
must decay quickly; effectively this imposes a smoothness condition on the
space.
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We now need to show that this Hilbert space is the RKHS corresponding to
the kernel k, i.e. that it has the reproducing property. This is easily achieved
as

N
O S 6:2)

Similarly

N /
(k(x, ), k(X)) = ZM

i=1 v

= k(x,x). (6.3)

Notice also that k(x, ) is in the RKHS as it has norm Zi]il()\igbi (x))2/\i =
k(x,x) < oo. We have now demonstrated that the Hilbert space comprised of
linear combinations of the eigenfunctions with the restriction Zfil f2/Mi < o0
fulfils the two conditions given in Definition 6.1. As there is a unique RKHS
associated with k(-,-), this Hilbert space must be that RKHS.

The advantage of the abstract formulation of the RKHS is that the eigenbasis
will change as we use different measures p in Mercer’s theorem. However, the
RKHS norm is in fact solely a property of the kernel and is invariant under
this change of measure. This can be seen from the fact that the proof of the
RKHS properties above is not dependent on the measure; see also Kailath
[1971, sec. I1.B]. A finite-dimensional example of this measure invariance is
explored in exercise 6.7.1.

Notice the analogy between the RKHS norm || f[12, = (f, f)n = So, f2/ s
and the quadratic form fT K ~'f; if we express K and f in terms of the eigen-
vectors of K we obtain exactly the same form (but the sum has only n terms if
f has length n).

If we sample the coefficients f; in the eigenexpansion f(x) = Zf\;l figi(x)
from N (0, A;) then

2

2

Bl = Y = Y (6.4)

i=1 i=1

Thus if N is infinite the sample functions are not in H (with probability 1)
as the expected value of the RKHS norm is infinite; see Wahba [1990, p. 5]
and Kailath [1971, sec. ILB] for further details. However, note that although
sample functions of this Gaussian process are not in H, the posterior mean after
observing some data will lie in the RKHS, due to the smoothing properties of
averaging.

Another view of the RKHS can be obtained from the reproducing kernel
map construction. We consider the space of functions f defined as

{f(x) - zn:aik:(x,xi) TneEN, x; €X, a; € R}. (6.5)
i=1
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regularizer

(kernel) ridge regression

representer theorem

Now let g(x) = Z?/:loz;-k;(x, x;). Then we define the inner product

n

(f,9)n = ZZaia;k(xi,XQ). (6.6)

i=1 j=1

Clearly condition 1 of Definition 6.1 is fulfilled under the reproducing kernel
map construction. We can also demonstrate the reproducing property, as

k(%) FO)r = Y aik(xx) = f(x). (6.7)
i=1

6.2 Regularization

The problem of inferring an underlying function f(x) from a finite (and possibly
noisy) dataset without any additional assumptions is clearly “ill posed”. For
example, in the noise-free case, any function that passes through the given data
points is acceptable. Under a Bayesian approach our assumptions are charac-
terized by a prior over functions, and given some data, we obtain a posterior
over functions. The problem of bringing prior assumptions to bear has also
been addressed under the reqularization viewpoint, where these assumptions
are encoded in terms of the smoothness of f.

We consider the functional

T = ST+ Q. D), (63)

where y is the vector of targets we are predicting and f = (f(x1),..., f(x,))"
is the corresponding vector of function values, and A is a scaling parameter that
trades off the two terms. The first term is called the regularizer and represents
smoothness assumptions on f as encoded by a suitable RKHS, and the second
term is a data-fit term assessing the quality of the prediction f(x;) for the
observed datum y;, e.g. the negative log likelihood.

Ridge regression (described in section 2.1) can be seen as a particular case
of regularization. Indeed, recalling that ||f||3, = Zi]ilfiz/)\i where f; is the
coefficient of eigenfunction ¢;(x), we see that we are penalizing the weighted
squared coefficients. This is taking place in feature space, rather than simply in
input space, as per the standard formulation of ridge regression (see eq. (2.4)),
so it corresponds to kernel ridge regression.

The representer theorem shows that each minimizer f € H of J[f] has the
form f(x) = Y.I, a;k(x,x;).! The representer theorem was first stated by
Kimeldorf and Wahba [1971] for the case of squared error.? O’Sullivan et al.
[1986] showed that the representer theorem could be extended to likelihood

11f the RKHS contains a null space of unpenalized functions then the given form is correct
modulo a term that lies in this null space. This is explained further in section 6.3.

2Schoenberg [1964] proved the representer theorem for the special case of cubic splines and
squared error. This was result extended to general RKHSs in Kimeldorf and Wahba [1971].
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functions arising from generalized linear models. The representer theorem can
be generalized still further, see e.g. Scholkopf and Smola [2002, sec. 4.2]. If the
data-fit term is convex (see section A.9) then there will be a unique minimizer
f of 111,

For Gaussian process prediction with likelihoods that involve the values of
f at the n training points only (so that Q(y,f) is the negative log likelihood
up to some terms not involving f), the analogue of the representer theorem is
obvious. This is because the predictive distribution of f(x.) £ f. at test point
x. given the data y is p(fi|y) = [ p(f<|f)p(fly) df. As derived in eq. (3.22) we
have

Elf.ly] = k(x*)TK_lE[ﬂy] (6.9)

due to the formulae for the conditional distribution of a multivariate Gaussian.
Thus E[f.]y] = > a;k(x., x;), where a = K~ 'E[f]y].

The regularization approach has a long tradition in inverse problems, dat-
ing back at least as far as Tikhonov [1963]; see also Tikhonov and Arsenin
[1977]. For the application of this approach in the machine learning literature
see e.g. Poggio and Girosi [1990].

In section 6.2.1 we consider RKHSs defined in terms of differential operators.
In section 6.2.2 we demonstrate how to solve the regularization problem in the
specific case of squared error, and in section 6.2.3 we compare and contrast the
regularization approach with the Gaussian process viewpoint.

6.2.1 Regularization Defined by Differential Operators

For x € RP define
m 2
o™ fI1> = ) BRI S (6.10)
8 J1 JD
jitetip=m 9T1 - TD

For example for m =2 and D = 2

o = [[(58) +2ara) + (5:8) Jmaze o)

Now set [|Pf]|2 = 32N a]|O™ f||? with non-negative coefficients a,,. Notice
that ||Pf||? is translation and rotation invariant.

In this section we assume that ag > 0; if this is not the case and aj is
the first non-zero coefficient, then there is a null space of functions that are
unpenalized. For example if £ = 2 then constant and linear functions are in the
null space. This case is dealt with in section 6.3.

|Pf||? penalizes f in terms of the variability of its function values and
derivatives up to order M. How does this correspond to the RKHS formulation
of section 6.17 The key is to recognize that the complex exponentials exp(27is -
x) are eigenfunctions of the differential operator if X = R”. In this case

M ~
1PfI = / S (s - 5)" | F(5) Pds, (6.12)

null space
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Green’s function
= kernel

where f(s) is the Fourier transform of f(x). Comparing eq. (6.12) with eq. (6.1)
we see that the kernel has the power spectrum

1
S(s) =
(®) Zi‘fzo am (47%s - s)™

and thus by Fourier inversion we obtain the stationary kernel

, (6.13)

e27rzs-x

k(x) = ds. 6.14
&) / SV am(4n2s - s)m (6.14)

A slightly different approach to obtaining the kernel is to use calculus of
variations to minimize J[f] with respect to f. The Euler-Lagrange equation
leads to

flx) = ZaiG(x_xi), (6.15)

with

M
Z(—l)mamVQmG = §(x —x'), (6.16)
m=0

where G(x,x’) is known as a Green’s function. Notice that the Green’s func-
tion also depends on the boundary conditions. For the case of X = RP by
Fourier transforming eq. (6.16) we recognize that G is in fact the kernel k. The
differential operator anf:o(—nmamvm and the integral operator k(-,-) are in
fact inverses, as shown by eq. (6.16). See Poggio and Girosi [1990] for further
details. Arfken [1985] provides an introduction to calculus of variations and
Green’s functions. RKHSs for regularizers defined by differential operators are
Sobolev spaces; see e.g. Adams [1975] for further details on Sobolev spaces.

We now give two specific examples of kernels derived from differential oper-
ators.

Example 1. Set ag = o?, a1 = 1 and a,, = 0 for m > 2 in D = 1. Using
the Fourier pair e=?1*l « 2a/(a? 4 47%s%) we obtain k(z — 2') = i@“ﬂw—xl‘.
Note that this is the covariance function of the Ornstein-Uhlenbeck process, see
section 4.2.1.

Example 2. By setting a,, = % and using the power series eV = ZEOZO y* k!
we obtain
o2
k(x—x") = /exp(?m’s C(x—x)) exp(f?(élwzs -8))ds (6.17)

- W eXP(‘%(X —x) T (x = X)), (6.18)

as shown by Yuille and Grzywacz [1989]. This is the squared exponential co-
variance function that we have seen earlier.
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6.2.2 Obtaining the Regularized Solution

The representer theorem tells us the general form of the solution to eq. (6.8).
We now consider a specific functional

1
20

n 1=

T = I+ 5 S = S0, (6.19)

which uses a squared error data-fit term (corresponding to the negative log

likelihood of a Gaussian noise model with variance 02). Substituting f(x) =

S aik(x,x;) and using (k(-,x;), k(-,x;))2 = k(x;,%x;) we obtain

1 1
n (6.20)

2
2 n On

1OLT(K + LZKQ)a — inKa + 2LQyTy.

Un
Minimizing J by differentiating w.r.t. the vector of coefficients & we obtain
& = (K + 02I)~ 'y, so that the prediction for a test point x, is f(x,) =
k(x.)" (K 4+ ¢2I)~ty. This should look very familiar—it is exactly the form of
the predictive mean obtained in eq. (2.23). In the next section we compare and
contrast the regularization and GP views of the problem.

The solution f(x) = Y . a;k(x,x;) that minimizes eq. (6.19) was called a
regularization network in Poggio and Girosi [1990].

6.2.3 The Relationship of the Regularization View to Gaus-
sian Process Prediction

The regularization method returns f = argming J [f]. For a Gaussian process
predictor we obtain a posterior distribution over functions. Can we make a

connection between these two views? In fact we shall see in this section that f
can be viewed as the mazimum a posteriori (MAP) function under the posterior.

Following Szeliski [1987] and Poggio and Girosi [1990] we consider

exp(~J17]) = exp (= 2PAIP) * exp(-Qu.H).  (6:21)

The first term on the RHS is a Gaussian process prior on f, and the second
is proportional to the likelihood. As f is the minimizer of J[f], it is the MAP
function.

To get some intuition for the Gaussian process prior, imagine f(x) being
represented on a grid in x-space, so that f is now an (infinite dimensional) vector
f. Thus we obtain |Pf||2 ~ "M a4y (D) T (Dinf) = £7(X, . amD)L Dyy)E
where D,, is an appropriate finite-difference approximation of the differential
operator O™. Observe that this prior term is a quadratic form in f.

To go into more detail concerning the MAP relationship we consider three
cases: (1) when Q(y,f) is quadratic (corresponding to a Gaussian likelihood);

regularization network



C. E. Rasmussen & C. K. 1. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. (© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

136

Relationships between GPs and Other Models

(ii) when Q(y,f) is not quadratic but convex and (iii) when Q(y,f) is not
convex.

In case (i) we have seen in chapter 2 that the posterior mean function can
be obtained exactly, and the posterior is Gaussian. As the mean of a Gaussian
is also its mode this is the MAP solution. The correspondence between the GP
posterior mean and the solution of the regularization problem f was made in
Kimeldorf and Wahba [1970].

In case (ii) we have seen in chapter 3 for classification problems using the
logistic, probit or softmax response functions that Q(y,f) is convex. Here the
MAP solution can be found by finding f (the MAP solution to the n-dimensional
problem defined at the training points) and then extending it to other x-values
through the posterior mean conditioned on f.

In case (iii) there will be more than one local minimum of J[f] under the
regularization approach. One could check these minima to find the deepest one.
However, in this case the argument for MAP is rather weak (especially if there
are multiple optima of similar depth) and suggests the need for a fully Bayesian
treatment.

While the regularization solution gives a part of the Gaussian process solu-
tion, there are the following limitations:

1. Tt does not characterize the uncertainty in the predictions, nor does it
handle well multimodality in the posterior.

2. The analysis is focussed at approximating the first level of Bayesian infer-
ence, concerning predictions for f. It is not usually extended to the next
level, e.g. to the computation of the marginal likelihood. The marginal
likelihood is very useful for setting any parameters of the covariance func-
tion, and for model comparison (see chapter 5).

In addition, we find the specification of smoothness via the penalties on deriva-
tives to be not very intuitive. The regularization viewpoint can be thought of
as directly specifying the inverse covariance rather than the covariance. As
marginalization is achieved for a Gaussian distribution directly from the covari-
ance (and not the inverse covariance) it seems more natural to us to specify
the covariance function. Also, while non-stationary covariance functions can
be obtained from the regularization viewpoint, e.g. by replacing the Lebesgue
measure in eq. (6.10) with a non-uniform measure u(x), calculation of the cor-
responding covariance function can then be very difficult.

6.3 Spline Models

In section 6.2 we discussed regularizers which had ay > 0 in eq. (6.12). We now
consider the case when ag = 0; in particular we consider the regularizer to be
of the form ||O™ f||?, as defined in eq. (6.10). In this case polynomials of degree
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up to m — 1 are in the null space of the regularization operator, in that they
are not penalized at all.

In the case that X = R” we can again use Fourier techniques to ob-
tain the Green’s function G corresponding to the Euler-Lagrange equation
(—1)mV?mG(x) = §(x). The result, as shown by Duchon [1977] and Meinguet
[1979] is

Cm.p|x —x'|?m=P otherwise, (6.22)

Glx—x) = {cm7D|x —x'|*m=Plog |x — x'| if 2m > D and D even
where ¢, p is a constant (Wahba [1990, p. 31] gives the explicit form). Note that
the constraint 2m > D has to be imposed to avoid having a Green’s function
that is singular at the origin. Explicit calculation of the Green’s function for
other domains X is sometimes possible; for example see Wahba [1990, sec. 2.2]
for splines on the sphere.

Because of the null space, a minimizer of the regularization functional has
the form

n k
fx) = D aiGxxi) + Y Bihi(x), (6.23)
i=1 j=1
where hq(x),...,hi(x) are polynomials that span the null space. The exact

values of the coefficients a and B for a specific problem can be obtained in
an analogous manner to the derivation in section 6.2.2; in fact the solution is
equivalent to that given in eq. (2.42).

To gain some more insight into the form of the Green’s function we consider
the equation (—1)™V?"G(x) = §(x) in Fourier space, leading to G(s) = (4n2s-
s)~™. G(s) plays a role like that of the power spectrum in eq. (6.13), but notice
that [ G(s)ds is infinite, which would imply that the corresponding process has
infinite variance. The problem is of course that the null space is unpenalized; for
example any arbitrary constant function can be added to f without changing
the regularizer.

Because of the null space we have seen that one cannot obtain a simple
connection between the spline solution and a corresponding Gaussian process
problem. However, by introducing the notion of an intrinsic random function
(IRF) one can define a generalized covariance; see Cressie [1993, sec. 5.4] and
Stein [1999, section 2.9] for details. The basic idea is to consider linear combina-~
tions of f(x) of the form g(x) = Zle a; f(x+40;) for which g(x) is second-order
stationary and where (h;(1),...,h;(0r))a =0 for j =1,..., k. A careful de-
scription of the equivalence of spline and IRF prediction is given in Kent and
Mardia [1994].

The power-law form of G(s) = (472s-s)~" means that there is no character-
istic length-scale for random functions drawn from this (improper) prior. Thus
we obtain the self-similar property characteristic of fractals; for further details
see Szeliski [1987] and Mandelbrot [1982]. Some authors argue that the lack
of a characteristic length-scale is appealing. This may sometimes be the case,
but if we believe there is an appropriate length-scale (or set of length-scales)

IRF
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spline interpolation

natural polynomial
spline

smoothing spline

for a given problem but this is unknown in advance, we would argue that a
hierarchical Bayesian formulation of the problem (as described in chapter 5)
would be more appropriate.

Splines were originally introduced for one-dimensional interpolation and
smoothing problems, and then generalized to the multivariate setting. Schoen-
berg [1964] considered the problem of finding the function that minimizes

b
JRGRIEI (6.24)

where f(™) denotes the m’th derivative of f, subject to the interpolation con-
straints f(z;) = fi, x; € (a,b) for i = 1,...,n and for f in an appropriate
Sobolev space. He showed that the solution is the natural polynomial spline,
which is a piecewise polynomial of order 2m — 1 in each interval [x;,z;41],
i=1,...,n—1, and of order m — 1 in the two outermost intervals. The pieces
are joined so that the solution has 2m — 2 continuous derivatives. Schoen-
berg also proved that the solution to the univariate smoothing problem (see
eq. (6.19)) is a natural polynomial spline. A common choice is m = 2, leading
to the cubic spline. One possible way of writing this solution is

xz ifz>0

0 otherwise. (6.25)

1 n
flx) = Zﬂjxj + Zai(x —x;)%, where (z); = {
§=0 i=1

It turns out that the coefficients o and 8 can be computed in time O(n) using
an algorithm due to Reinsch; see Green and Silverman [1994, sec. 2.3.3] for
details.

Splines were first used in regression problems. However, by using general-
ized linear modelling [McCullagh and Nelder, 1983] they can be extended to
classification problems and other non-Gaussian likelihoods, as we did for GP
classification in section 3.3. Early references in this direction include Silverman
[1978] and O’Sullivan et al. [1986].

There is a vast literature in relation to splines in both the statistics and
numerical analysis literatures; for entry points see citations in Wahba [1990]
and Green and Silverman [1994].

6.3.1 A 1-d Gaussian Process Spline Construction

In this section we will further clarify the relationship between splines and Gaus-
sian processes by giving a GP construction for the solution of the univariate
cubic spline smoothing problem whose cost functional is

n 1
Z (fla) —w)° + )\/0 (f"(z))? da, (6.26)

where the observed data are {(z;,y;)|[i=1,...,n, 0 <z <--- < x, <1} and
A is a smoothing parameter controlling the trade-off between the first term, the
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data-fit, and the second term, the regularizer, or complexity penalty. Recall
that the solution is a piecewise polynomial as in eq. (6.25).

Following Wahba [1978], we consider the random function

1
g(@) =3 Bial + f(a) (6.27)

J=0

where 8 ~ N (0, 052[) and f(x) is a Gaussian process with covariance O'J% kop(x, '),
where

2 3

o
ki G (6.28)

1
bap(a) £ [ @ =)’ = ) du =
o 2 3

and v = min(z, z’).

To complete the analogue of the regularizer in eq. (6.26), we need to remove
any penalty on polynomial terms in the null space by making the prior vague,
i.e. by taking the limit 062 — 00. Notice that the covariance has the form of
contributions from explicit basis functions, h(x) = (1,2) T and a regular covari-
ance function kg, (2, 2'), a problem which we have already studied in section 2.7.
Indeed we have computed the limit where the prior becomes vague Ug — 00,

the result is given in eq. (2.42).
Plugging into the mean equation from eq. (2.42), we get the predictive mean

f(z) = k(z.) 'K, ' (y —H'B) +h(z,)" B, (6.29)

where K, is the covariance matrix corresponding to szck‘sp (z5,2;) + 026;; eval-
uated at the training points, H is the matrix that collects the h(xz;) vectors at
all training points, and 8 = (HK,'H")"'HK 'y is given below eq. (2.42).
It is not difficult to show that this predictive mean function is a piecewise cu-
bic polynomial, since the elements of k(x,) are piecewise® cubic polynomials.
Showing that the mean function is a first order polynomial in the outer intervals
[0,21] and [z, 1] is left as exercise 6.7.3.

So far ks, has been produced rather mysteriously “from the hat”; we now
provide some explanation. Shepp [1966] defined the I-fold integrated Wiener
process as

o - )

Wi(z) = /0 TZ(u)du, l=0,1, ... (6.30)
where Z(u) denotes the Gaussian white noise process with covariance 6 (u —u’).
Note that W is the standard Wiener process. It is easy to show that kg, (z, a’)
is the covariance of the once-integrated Wiener process by writing W1 (z) and
Wi (z") using eq. (6.30) and taking the expectation using the covariance of the
white noise process. Note that WW; is the solution to the stochastic differential
equation (SDE) X 41 = Z: see Appendix B for further details on SDEs. Thus

3The pieces are joined at the datapoints, the points where the min(z, ') from the covari-
ance function is non-differentiable.
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Figure 6.1: Panel (a) shows the application of the spline covariance to a simple
dataset. The full line shows the predictive mean, which is a piecewise cubic polyno-
mial, and the grey area indicates the 95% confidence area. The two thin dashed and
dash-dotted lines are samples from the posterior. Note that the posterior samples
are not as smooth as the mean. For comparison a GP using the squared exponential
covariance function is shown in panel (b). The hyperparameters in both cases were
optimized using the marginal likelihood.

for the cubic spline we set [ = 1 to obtain the SDE X" = Z, corresponding to
the regularizer [(f”(z))%dz.

We can also give an explicit basis-function construction for the covariance
function kep. Consider the family of random functions given by

1 N-1 i
In@@) = 7= ; YT~ %)+ (6.31)

where v is a vector of parameters with v ~ A(0, T). Note that the sum has
the form of evenly spaced “ramps” whose magnitudes are given by the entries
in the « vector. Thus

Elin@fw ()] = 5 3@ =104 = 1) (6:32)

Taking the limit N — oo, we obtain eq. (6.28), a derivation which is also found
in [Vapnik, 1998, sec. 11.6].

Notice that the covariance function kg, given in eq. (6.28) corresponds to a
Gaussian process which is MS continuous but only once MS differentiable. Thus
samples from the prior will be quite “rough”, although (as noted in section 6.1)
the posterior mean, eq. (6.25), is smoother.

The constructions above can be generalized to the regularizer [(f(™(z))?dx
by replacing (v — u)4 with (z — )" /(m — 1)! in eq. (6.28) and similarly in
eq. (6.32), and setting h(z) = (1,z,...,2m )T,

Thus, we can use a Gaussian process formulation as an alternative to the
usual spline fitting procedure. Note that the trade-off parameter A from eq. (6.26)
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Figure 6.2: Panel (a) shows a linearly separable binary classification problem, and a
separating hyperplane. Panel (b) shows the maximum margin hyperplane.

is now given as the ratio o /o%. The hyperparameters 07 and o, can be set

using the techniques from section 5.4.1 by optimizing the marginal likelihood
given in eq. (2.45). Kohn and Ansley [1987] give details of an O(n) algorithm
(based on Kalman filtering) for the computation of the spline and the marginal
likelihood. In addition to the predictive mean the GP treatment also yields an
explicit estimate of the noise level and predictive error bars. Figure 6.1 shows
a simple example. Notice that whereas the mean function is a piecewise cubic
polynomial, samples from the posterior are not smooth. In contrast, for the
squared exponential covariance functions shown in panel (b), both the mean
and functions drawn from the posterior are infinitely differentiable.

6.4 Support Vector Machines

Since the mid 1990’s there has been an explosion of interest in kernel machines,
and in particular the support vector machine (SVM). The aim of this section
is to provide a brief introduction to SVMs and in particular to compare them
to Gaussian process predictors. We consider SVMs for classification and re-
gression problems in sections 6.4.1 and 6.4.2 respectively. More comprehensive
treatments can be found in Vapnik [1995], Cristianini and Shawe-Taylor [2000]
and Scholkopf and Smola [2002].

6.4.1 Support Vector Classification

For support vector classifiers, the key notion that we need to introduce is that
of the maximum margin hyperplane for a linear classifier. Then by using the
“kernel trick” this can be lifted into feature space. We consider first the sep-
arable case and then the non-separable case. We conclude this section with a
comparison between GP classifiers and SVMs.
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functional margin

geometrical margin

optimization problem

The Separable Case

Figure 6.2(a) illustrates the case where the data is linearly separable. For a
linear classifier with weight vector w and offset wy, let the decision boundary
be defined by w - x + wg = 0, and let w = (w,wy). Clearly, there is a whole
version space of weight vectors that give rise to the same classification of the
training points. The SVM algorithm chooses a particular weight vector, that
gives rise to the “maximum margin” of separation.

Let the training set be pairs of the form (x;,y;) for i = 1,...,n, where y; =
+1. For a given weight vector we can compute the quantity 4; = y; (W - x +wy),
which is known as the functional margin. Notice that 4; > 0 if a training point
is correctly classified.

If the equation f(x) = w - x + wq defines a discriminant function (so that
the output is sgn(f(x))), then the hyperplane ¢w - x 4+ cwy defines the same
discriminant function for any ¢ > 0. Thus we have the freedom to choose the
scaling of w so that min; 4; = 1, and in this case w is known as the canonical
form of the hyperplane.

The geometrical margin is defined as v; = 4;/|w|. For a training point x;
that is correctly classified this is simply the distance from x; to the hyperplane.
To see this, let ¢ = 1/|w| so that w = w/|w| is a unit vector in the direction
of w, and wg is the corresponding offset. Then W - x computes the length
of the projection of x onto the direction orthogonal to the hyperplane and
WX+ 1wy computes the distance to the hyperplane. For training points that are
misclassified the geometrical margin is the negative distance to the hyperplane.

The geometrical margin for a dataset D is defined as vp = min; ;. Thus
for a canonical separating hyperplane the margin is 1/|w|. We wish to find the
maximum margin hyperplane, i.e. the one that maximizes vp.

By considering canonical hyperplanes, we are thus led to the following op-
timization problem to determine the maximum margin hyperplane:

1
minimize §|w|2 over w, wo
subject to y;(w - x; +wg) > 1 foralli=1,...,n. (6.33)

It is clear by considering the geometry that for the maximum margin solution
there will be at least one data point in each class for which y; (w-x;+wg) = 1, see
Figure 6.2(b). Let the hyperplanes that pass through these points be denoted
H, and H_ respectively.

This constrained optimization problem can be set up using Lagrange multi-
pliers, and solved using numerical methods for quadratic programming? (QP)
problems. The form of the solution is

4A quadratic programming problem is an optimization problem where the objective func-
tion is quadratic and the constraints are linear in the unknowns.
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where the \;’s are non-negative Lagrange multipliers. Notice that the solution
is a linear combination of the x;’s.

The key feature of equation 6.34 is that A; is zero for every x; except those
which lie on the hyperplanes H, or H_; these points are called the support
vectors. The fact that not all of the training points contribute to the final
solution is referred to as the sparsity of the solution. The support vectors
lie closest to the decision boundary. Note that if all of the other training
points were removed (or moved around, but not crossing H; or H_) the same
maximum margin hyperplane would be found. The quadratic programming
problem for finding the A;’s is convex, i.e. there are no local minima. Notice
the similarity of this to the convexity of the optimization problem for Gaussian
process classifiers, as described in section 3.4.

To make predictions for a new input x, we compute
n
sgn(w - X, +wp) = sgn (Z Aivi (X5 - X)) + wo). (6.35)
i=1

In the QP problem and in eq. (6.35) the training points {x;} and the test point
x, enter the computations only in terms of inner products. Thus by using the
kernel trick we can replace occurrences of the inner product by the kernel to
obtain the equivalent result in feature space.

The Non-Separable Case

For linear classifiers in the original x space there will be some datasets that
are not linearly separable. One way to generalize the SVM problem in this
case is to allow violations of the constraint y;(w - x; + wg) > 1 but to impose a
penalty when this occurs. This leads to the soft margin support vector machine
problem, the minimization of

%|w|2 +CY (L—wifi)+ (6.36)
=1

with respect to w and wg, where f; = f(x;) = w-x; + wp and (2)4 = z if
z > 0 and 0 otherwise. Here C' > 0 is a parameter that specifies the relative
importance of the two terms. This convex optimization problem can again be
solved using QP methods and yields a solution of the form given in eq. (6.34). In
this case the support vectors (those with A; # 0) are not only those data points
which lie on the separating hyperplanes, but also those that incur penalties.
This can occur in two ways (i) the data point falls in between H; and H_ but
on the correct side of the decision surface, or (ii) the data point falls on the
wrong side of the decision surface.

In a feature space of dimension N, if N > n then there will always be
separating hyperplane. However, this hyperplane may not give rise to good
generalization performance, especially if some of the labels are incorrect, and
thus the soft margin SVM formulation is often used in practice.

support vectors

kernel trick

soft margin
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Figure 6.3: (a) A comparison of the hinge error, gx and gs. (b) The e-insensitive
error function used in SVR.

For both the hard and soft margin SVM QP problems a wide variety of
algorithms have been developed for their solution; see Scholkopf and Smola
[2002, ch. 10] for details. Basic interior point methods involve inversions of nxn
matrices and thus scale as O(n?), as with Gaussian process prediction. However,
there are other algorithms, such as the sequential minimal optimization (SMO)
algorithm due to Platt [1999], which often have better scaling in practice.

Above we have described SVMs for the two-class (binary) classification prob-
lem. There are many ways of generalizing SVMs to the multi-class problem,
see Scholkopf and Smola [2002, sec. 7.6] for further details.

Comparing Support Vector and Gaussian Process Classifiers

For the soft margin classifier we obtain a solution of the form w = )" a;x;
(with a; = Aiy;) and thus [w|* = 37, - aja;(x; - x;). Kernelizing this we obtain
lwi? = a'Ka = fTK7'f, as® Ka = f. Thus the soft margin objective
function can be written as

Lot 1 -
S K F+CY (1—vifi)s. (6.37)

=1

For the binary GP classifier, to obtain the MAP value f of p(f|y) we minimize
the quantity

1 B n

LR ;logpwfi), (6.38)
cf. eq. (3.12). (The final two terms in eq. (3.12) are constant if the kernel is
fixed.)

For log-concave likelihoods (such as those derived from the logistic or pro-
bit response functions) there is a strong similarity between the two optimiza-
tion problems in that they are both convex. Let gx(z) £ log(1 + e™%), g =

5Here the offset wg has been absorbed into the kernel so it is not an explicit extra param-
eter.
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—log ®(2), and ghinge(2) = (1 — 2)4 where z = y; fi. We refer to gpinge as the
hinge error function, due to its shape. As shown in Figure 6.3(a) all three data
fit terms are monotonically decreasing functions of z. All three functions tend
to infinity as z — —oo and decay to zero as z — oo. The key difference is that
the hinge function takes on the value 0 for z > 1, while the other two just decay
slowly. It is this flat part of the hinge function that gives rise to the sparsity of
the SVM solution.

Thus there is a close correspondence between the MAP solution of the GP
classifier and the SVM solution. Can this correspondence be made closer by
considering the hinge function as a negative log likelihood? The answer to this
is no [Seeger, 2000, Sollich, 2002]. If Cgninge (%) defined a negative log likelihood,
then exp(—Cgninge(f)) + exp(—C¢ninge (—f)) should be a constant independent
of f, but this is not the case. To see this, consider the quantity

v(f;C) = s(O)exp(=C(1 = f)+) + exp(=C(1 + f)4)]. (6.39)

k(C) cannot be chosen so as to make v(f;C) = 1 independent of the value
of f for C' > 0. By comparison, for the logistic and probit likelihoods the
analogous expression is equal to 1. Sollich [2002] suggests choosing x(C) =
1/(1 4+ exp(—2C)) which ensures that v(f,C) < 1 (with equality only when
f = +£1). He also gives an ingenious interpretation (involving a “don’t know”
class to soak up the unassigned probability mass) that does yield the SVM
solution as the MAP solution to a certain Bayesian problem, although we find
this construction rather contrived. Exercise 6.7.2 invites you to plot v(f;C) as
a function of f for various values of C.

One attraction of the GP classifier is that it produces an output with a
clear probabilistic interpretation, a prediction for p(y = +1|x). One can try
to interpret the function value f(x) output by the SVM probabilistically, and
Platt [2000] suggested that probabilistic predictions can be generated from the
SVM by computing o(af(x) + b) for some constants a,b that are fitted using
some “unbiased version” of the training set (e.g. using cross-validation). One
disadvantage of this rather ad hoc procedure is that unlike the GP classifiers
it does not take into account the predictive variance of f(x) (cf. eq. (3.25)).
Seeger [2003, sec. 4.7.2] shows that better error-reject curves can be obtained
on an experiment using the MNIST digit classification problem when the effect
of this uncertainty is taken into account.

6.4.2 Support Vector Regression

The SVM was originally introduced for the classification problem, then extended
to deal with the regression case. The key concept is that of the e-insensitive
error function. This is defined as

| |zl =€ if|z] >
9:(2) = { 0 otherwise. (6.40)

This function is plotted in Figure 6.3(b). As in eq. (6.21) we can interpret
exp(—gc(z)) as a likelihood model for the regression residuals (c.f. the squared

hinge error function
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error function corresponding to a Gaussian model). However, we note that
this is quite an unusual choice of model for the distribution of residuals and
is basically motivated by the desire to obtain a sparse solution (see below)
as in support vector classifier. If ¢ = 0 then the error model is a Laplacian
distribution, which corresponds to least absolute values regression (Edgeworth
[1887], cited in Rousseeuw [1984]); this is a heavier-tailed distribution than the
Gaussian and provides some protection against outliers. Girosi [1991] showed
that the Laplacian distribution can be viewed as a continuous mixture of zero-
mean Gaussians with a certain distribution over their variances. Pontil et al.
[1998] extended this result by allowing the means to uniformly shift in [—e, €]
in order to obtain a probabilistic model corresponding to the e-insensitive error
function. See also section 9.3 for work on robustification of the GP regression
problem.

For the linear regression case with an e-insensitive error function and a
Gaussian prior on w, the MAP value of w is obtained by minimizing

SO gl — fo) (641)
=1

w.r.t. w. The solution® is f(x,) = >_i~; a;X; - x, where the coefficients e are
obtained from a QP problem. The problem can also be kernelized to give the
solution f(x.) = >0 | aik(x, Xy).

As for support vector classification, many of the coefficients a; are zero. The
data points which lie inside the e-“tube” have «; = 0, while those on the edge
or outside have non-zero «;.

6.5 Least-squares Classification

In chapter 3 we have argued that the use of logistic or probit likelihoods pro-
vides the natural route to develop a GP classifier, and that it is attractive in
that the outputs can be interpreted probabilistically. However, there is an even
simpler approach which treats classification as a regression problem.

Our starting point is binary classification using the linear predictor f(x) =
w | x. This is trained using linear regression with a target y, for patterns that
have label +1, and target y_ for patterns that have label —1. (Targets y4, y_
give slightly more flexibility than just using targets of +1.) As shown in Duda
and Hart [1973, section 5.8], choosing y., y— appropriately allows us to obtain
the same solution as Fisher’s linear discriminant using the decision criterion
f(x) =2 0. Also, they show that using targets yy = +1, y— = —1 with the
least-squares error function gives a minimum squared-error approximation to
the Bayes discriminant function p(C4 |x) — p(C—|x) as n — oo. Following Rifkin
and Klautau [2004] we call such methods least-squares classification (LSC). Note
that under a probabilistic interpretation the squared-error criterion is rather an

6Here we have assumed that the constant 1 is included in the input vector x.
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odd choice as it implies a Gaussian noise model, yet only two values of the
target (y4 and y_) are observed.

It is natural to extend the least-squares classifier using the kernel trick.
This has been suggested by a number of authors including Poggio and Girosi
[1990] and Suykens and Vanderwalle [1999]. Experimental results reported in
Rifkin and Klautau [2004] indicate that performance comparable to SVMs can
be obtained using kernel LSC (or as they call it the regularized least-squares
classifier, RLSC).

Consider a single random variable y which takes on the value +1 with proba-
bility p and value —1 with probability 1—p. Then the value of f which minimizes
the squared error function E = p(f —1)? + (1 —p)(f +1)? is f=2p—1, which
is a linear rescaling of p to the interval [—1,1]. (Equivalently if the targets are
1 and 0, we obtain f = p.) Hence we observe that LSC will estimate p correctly
in the large data limit. If we now consider not just a single random variable,
but wish to estimate p(C4|x) (or a linear rescaling of it), then as long as the
approximating function f(x) is sufficiently flexible, we would expect that in the
limit n — oo it would converge to p(C|x). (For more technical detail on this
issue, see section 7.2.1 on consistency.) Hence LSC is quite a sensible procedure
for classification, although note that there is no guarantee that f(x) will be
constrained to lie in the interval [y_,y;]. If we wish to guarantee a proba-
bilistic interpretation, we could “squash” the predictions through a sigmoid, as
suggested for SVMs by Platt [2000] and described on page 145.

When generalizing from the binary to multi-class situation there is some
freedom as to how to set the problem up. Schélkopf and Smola [2002, sec. 7.6]
identify four methods, namely one-versus-rest (where C' binary classifiers are
trained to classify each class against all the rest), all pairs (where C(C —1)/2
binary classifiers are trained), error-correcting output coding (where each class
is assigned a binary codeword, and binary classifiers are trained on each bit
separately), and multi-class objective functions (where the aim is to train C
classifiers simultaneously rather than creating a number of binary classification
problems). One also needs to specify how the outputs of the various classifiers
that are trained are combined so as to produce an overall answer. For the
one-versus-rest’ method one simple criterion is to choose the classifier which
produces the most positive output. Rifkin and Klautau [2004] performed ex-
tensive experiments and came to the conclusion that the one-versus-rest scheme
using either SVMs or RLSC is as accurate as any other method overall, and
has the merit of being conceptually simple and straightforward to implement.

6.5.1 Probabilistic Least-squares Classification

The LSC algorithm discussed above is attractive from a computational point
of view, but to guarantee a valid probabilistic interpretation one may need
to use a separate post-processing stage to “squash” the predictions through a
sigmoid. However, it is not so easy to enforce a probabilistic interpretation

7This method is also sometimes called one-versus-all.
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during the training stage. One possible solution is to combine the ideas of
training using leave-one-out cross-validation, covered in section 5.4.2, with the
use of a (parameterized) sigmoid function, as in Platt [2000]. We will call this
method the probabilistic least-squares classifier (PLSC).

In section 5.4.2 we saw how to compute the Gaussian leave-one-out (LOO)
predictive probabilities, and that training of hyperparameters can be based
on the sum of the log LOO probabilities. Using this idea, we express the LOO
probability by squashing a linear function of the Gaussian predictive probability
through a cumulative Gaussian

p(yilXﬂyfiv 0)

/@(yi(afi + B))N(filpi, o) dfi

_ (I)(yi(aﬂi + 6))
V1+a?o?

where the integral is given in eq. (3.82) and the leave-one-out predictive mean p;
and variance o? are given in eq. (5.12). The objective function is the sum of the
log LOO probabilities, eq. (5.11) which can be used to set the hyperparameters
as well as the two additional parameters of the linear transformation, « and § in
eq. (6.42). Introducing the likelihood in eq. (6.42) into the objective eq. (5.11)
and taking derivatives we obtain

(6.42)

9LLoo _ i Ologp(yi| X, y—i,0) Opi n dlog p(yi| X, y—:,0) o7
69]‘ P 3;% 89] 80'12 30]
- zn: N(ri) g (am _ afapi + ) 302)

=1 (yiri) V1 + a’o?

90;  2(1+ a20?) 09,
where r; = (ap; + 3)/V1+ a?0? and the partial derivatives of the Gaussian
LOO parameters du;/00; and do?/00; are given in eq. (5.13). Finally, for the
linear transformation parameters we have

(6.43)

dLroo _ Z Yi — Bao;
9a S Fw%ﬂ X (6.44)

9Lroo i N(rs) Yi
9B = 2(yiri) \/1+ a%0?

These partial derivatives can be used to train the parameters of the GP. There
are several options on how to do predictions, but the most natural would seem
to be to compute predictive mean and variance and squash it through the
sigmoid, parallelling eq. (6.42). Applying this model to the USPS 3s vs. 5s
binary classification task discussed in section 3.7.3, we get a test set error rate
of 12/773 = 0.0155%, which compares favourably with the results reported for
other methods in Figure 3.10. However, the test set information is only 0.77
bits,® which is very poor.

8The test information is dominated by a single test case, which is predicted confidently
to belong to the wrong class. Visual inspection of the digit reveals that indeed it looks as
though the testset label is wrong for this case. This observation highlights the danger of not
explicitly allowing for data mislabelling in the model for this kind of data.
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6.6 Relevance Vector Machines

Although usually not presented as such, the relevance vector machine (RVM)
introduced by Tipping [2001] is actually a special case of a Gaussian process.
The covariance function has the form

N
Foox) = 3 0,605, (6.45)
j=1""

where «; are hyperparameters and the N basis functions ¢;(x) are usually, but
not necessarily taken to be Gaussian-shaped basis functions centered on each
of the n training data points

[x —x;?
05(x) = exp (- Z20-), (6.46)
where ¢ is a length-scale hyperparameter controlling the width of the basis
function. Notice that this is simply the construction for the covariance function
corresponding to an N-dimensional set of basis functions given in section 2.1.2,
with ¥, = diag(a; ', ..., axy").

The covariance function in eq. (6.45) has two interesting properties: firstly,
it is clear that the feature space corresponding to the covariance function is
finite dimensional, i.e. the covariance function is degenerate, and secondly the
covariance function has the odd property that it depends on the training data.
This dependency means that the prior over functions depends on the data, a
property which is at odds with a strict Bayesian interpretation. Although the
usual treatment of the model is still possible, this dependency of the prior on
the data may lead to some surprising effects, as discussed below.

Training the RVM is analogous to other GP models: optimize the marginal
likelihood w.r.t. the hyperparameters. This optimization often leads to a sig-
nificant number of the a; hyperparameters tending towards infinity, effectively
removing, or pruning, the corresponding basis function from the covariance
function in eq. (6.45). The basic idea is that basis functions that are not sig-
nificantly contributing to explaining the data should be removed, resulting in
a sparse model. The basis functions that survive are called relevance vectors.
Empirically it is often observed that the number of relevance vectors is smaller
than the number of support vectors on the same problem [Tipping, 2001].

The original RVM algorithm [Tipping, 2001] was not able to exploit the
sparsity very effectively during model fitting as it was initialized with all of the
a;s set to finite values, meaning that all of the basis functions contributed to
the model. However, careful analysis of the RVM marginal likelihood by Faul
and Tipping [2002] showed that one can carry out optimization w.r.t. a single
«; analytically. This has led to the accelerated training algorithm described
in Tipping and Faul [2003] which starts with an empty model (i.e. all a;s set
to infinity) and adds basis functions sequentially. As the number of relevance
vectors is (usually much) less than the number of training cases it will often
be much faster to train and make predictions using a RVM than a non-sparse

relevance vectors
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GP. Also note that the basis functions can include additional hyperparameters,
e.g. one could use an automatic relevance determination (ARD) form of basis
function by using different length-scales on different dimensions in eq. (6.46).
These additional hyperparameters could also be set by optimizing the marginal
likelihood.

The use of a degenerate covariance function which depends on the data
has some undesirable effects. Imagine a test point, x,, which lies far away
from the relevance vectors. At x, all basis functions will have values close to
zero, and since no basis function can give any appreciable signal, the predictive
distribution will be a Gaussian with a mean close to zero and wvariance close
to zero (or to the inferred noise level). This behaviour is undesirable, and
could lead to dangerously false conclusions. If the x, is far from the relevance
vectors, then the model shouldn’t be able to draw strong conclusions about
the output (we are extrapolating), but the predictive uncertainty becomes very
small—this is the opposite behaviour of what we would expect from a reasonable
model. Here, we have argued that for localized basis functions, the RVM has
undesirable properties, but as argued in Rasmussen and Quinonero-Candela
[2005] it is actually the degeneracy of the covariance function which is the
core of the problem. Although the work of Rasmussen and Quifionero-Candela
[2005] goes some way towards fixing the problem, there is an inherent conflict:
degeneracy of the covariance function is good for computational reasons, but
bad for modelling reasons.

6.7 Exercises

1. We motivate the fact that the RKHS norm does not depend on the den-
sity p(x) using a finite-dimensional analogue. Consider the n-dimensional
vector f, and let the n x n matrix ® be comprised of non-colinear columns
@q,...,¢,. Then f can be expressed as a linear combination of these ba-
sis vectors f = Y1 | ¢;¢p; = ®c for some coefficients {c;}. Let the ¢s
be eigenvectors of the covariance matrix K w.r.t. a diagonal matrix P
with non-negative entries, so that K P® = ®A, where A is a diagonal
matrix containing the eigenvalues. Note that ®TP® = I,,. Show that
S c2/N =c"Alce = fTK~If, and thus observe that fT K ~1f can be
expressed as ¢ A~ !¢ for any valid P and corresponding ®. Hint: you
may find it useful to set ® = PY/2®, K = PY2KP1/2 ete.

2. Plot eq. (6.39) as a function of f for different values of C. Show that
there is no value of C' and x(C) which makes v(f;C) equal to 1 for all
values of f. Try setting k(C) = 1/(1 4 exp(—2C)) as suggested in Sollich
[2002] and observe what effect this has.

3. Show that the predictive mean for the spline covariance GP in eq. (6.29)
is a linear function of x, when z, is located either to the left or to the
right of all training points. Hint: consider the eigenvectors corresponding
to the two largest eigenvalues of the training set covariance matrix from
eq. (2.40) in the vague limit.
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