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Appendix B

Gaussian Markov Processes

Particularly when the index set for a stochastic process is one-dimensional such
as the real line or its discretization onto the integer lattice, it is very interesting
to investigate the properties of Gaussian Markov processes (GMPs). In this
Appendix we use X(t) to define a stochastic process with continuous time pa-
rameter t. In the discrete time case the process is denoted . . . , X−1, X0, X1, . . .
etc. We assume that the process has zero mean and is, unless otherwise stated,
stationary.

A discrete-time autoregressive (AR) process of order p can be written as AR process

Xt =
p∑

k=1

akXt−k + b0Zt, (B.1)

where Zt ∼ N (0, 1) and all Zt’s are i.i.d. . Notice the order-p Markov property
that given the history Xt−1, Xt−2, . . ., Xt depends only on the previous p X’s.
This relationship can be conveniently expressed as a graphical model; part of
an AR(2) process is illustrated in Figure B.1. The name autoregressive stems
from the fact that Xt is predicted from the p previous X’s through a regression
equation. If one stores the current X and the p − 1 previous values as a state
vector, then the AR(p) scalar process can be written equivalently as a vector
AR(1) process.

. . . . . .

Figure B.1: Graphical model illustrating an AR(2) process.

Moving from the discrete time to the continuous time setting, the question
arises as to how generalize the Markov notion used in the discrete-time AR
process to define a continuoous-time AR process. It turns out that the correct
generalization uses the idea of having not only the function value but also p of
its derivatives at time t giving rise to the stochastic differential equation (SDE)1 SDE: stochastic

differential equation
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apX
(p)(t) + ap−1X

(p−1)(t) + . . .+ a0X(t) = b0Z(t), (B.2)

where X(i)(t) denotes the ith derivative of X(t) and Z(t) is a white Gaus-
sian noise process with covariance δ(t − t′). This white noise process can be
considered the derivative of the Wiener process. To avoid redundancy in the
coefficients we assume that ap = 1. A considerable amount of mathemati-
cal machinery is required to make rigorous the meaning of such equations, see
e.g. Øksendal [1985]. As for the discrete-time case, one can write eq. (B.2) as
a first-order vector SDE by defining the state to be X(t) and its first p − 1
derivatives.

We begin this chapter with a summary of some Fourier analysis results in
section B.1. Fourier analysis is important to linear time invariant systems such
as equations (B.1) and (B.2) because e2πist is an eigenfunction of the corre-
sponding difference (resp differential) operator. We then move on in section
B.2 to discuss continuous-time Gaussian Markov processes on the real line and
their relationship to the same SDE on the circle. In section B.3 we describe
discrete-time Gaussian Markov processes on the integer lattice and their re-
lationship to the same difference equation on the circle. In section B.4 we
explain the relationship between discrete-time GMPs and the discrete sampling
of continuous-time GMPs. Finally in section B.5 we discuss generalizations
of the Markov concept in higher dimensions. Much of this material is quite
standard, although the relevant results are often scattered through different
sources, and our aim is to provide a unified treatment. The relationship be-
tween the second-order properties of the SDEs on the real line and the circle,
and difference equations on the integer lattice and the regular polygon is, to
our knowledge, novel.

B.1 Fourier Analysis

We follow the treatment given by Kammler [2000]. We consider Fourier analysis
of functions on the real line R, of periodic functions of period l on the circle
Tl, of functions defined on the integer lattice Z, and of functions on PN , the
regular N -polygon, which is a discretization of Tl.

For sufficiently well-behaved functions on R we have

f(x) =
∫ ∞

−∞
f̃(s)e2πisx ds, f̃(s) =

∫ ∞

−∞
f(x)e−2πisx dx. (B.3)

We refer to the equation on the left as the synthesis equation, and the equation
on the right as the analysis equation.

For functions on Tl we obtain the Fourier series representations

f(x) =
∞∑

k=−∞

f̃ [k]e2πikx/l, f̃ [k] =
1
l

∫ l

0

f(x)e−2πikx/l dx, (B.4)

1The ak coefficients in equations (B.1) and (B.2) are not intended to have a close relation-
ship. An approximate relationship might be established through the use of finite-difference
approximations to derivatives.
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where f̃ [k] denotes the coefficient of e2πikx/l in the expansion. We use square
brackets [ ] to denote that the argument is discrete, so that Xt and X[t] are
equivalent notations.

Similarly for Z we obtain

f [n] =
∫ l

0

f̃(s)e2πisn/l ds, f̃(s) =
1
l

∞∑
n=−∞

f [n]e−2πisn/l. (B.5)

Note that f̃(s) is periodic with period l and so is defined only for 0 ≤ s < l to
avoid aliasing. Often this transform is defined for the special case l = 1 but the
general case emphasizes the duality between equations (B.4) and (B.5).

Finally, for functions on PN we have the discrete Fourier transform

f [n] =
N−1∑
k=0

f̃ [k]e2πikn/N , f̃ [k] =
1
N

N−1∑
n=0

f [n]e−2πikn/N . (B.6)

Note that there are other conventions for Fourier transforms, particularly those
involving ω = 2πs. However, this tends to destroy symmetry between the
analysis and synthesis equations so we use the definitions given above.

In the case of stochastic processes, the most important Fourier relationship
is between the covariance function and the power spectrum; this is known as
the Wiener-Khintchine theorem, see e.g. Chatfield [1989].

B.1.1 Sampling and Periodization

We can obtain relationships between functions and their transforms on R, Tl,
Z, PN through the notions of sampling and periodization.

Definition B.1 h-sampling: Given a function f on R and a spacing parameter h-sampling

h > 0, we construct a corresponding discrete function φ on Z using

φ[n] = f(nh), n ∈ Z. (B.7)
�

Similarly we can discretize a function defined on Tl onto PN , but in this case
we must take h = l/N so that N steps of size h will equal the period l.

Definition B.2 Periodization by summation: Let f(x) be a function on R that periodization by
summationrapidly approaches 0 as x → ±∞. We can sum translates of the function to

produce the l-periodic function

g(x) =
∞∑

m=−∞
f(x−ml), (B.8)

for l > 0. Analogously, when φ is defined on Z and φ[n] rapidly approaches 0
as n→ ±∞ we can construct a function γ on PN by N -summation by setting

γ[n] =
∞∑

m=−∞
φ[n−mN ]. (B.9)

�
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Let φ[n] be obtained by h-sampling from f(x), with corresponding Fourier
transforms φ̃(s) and f̃(s). Then we have

φ[n] = f(nh) =
∫ ∞

−∞
f̃(s)e2πisnh ds, (B.10)

φ[n] =
∫ l

0

φ̃(s)e2πisn/l ds. (B.11)

By breaking up the domain of integration in eq. (B.10) we obtain

φ[n] =
∞∑

m=−∞

∫ (m+1)l

ml

f̃(s)e2πisnh ds (B.12)

=
∞∑

m=−∞

∫ l

0

f̃(s′ +ml)e2πinh(s′+ml) ds′, (B.13)

using the change of variable s′ = s −ml. Now set hl = 1 and use e2πinm = 1
for n, m integers to obtain

φ[n] =
∫ l

0

( ∞∑
m=−∞

f̃(s+ml)
)
e2πisn/l ds, (B.14)

which implies that

φ̃(s) =
∞∑

m=−∞
f̃(s+ml), (B.15)

with l = 1/h. Alternatively setting l = 1 one obtains φ̃(s) = 1
h

∑∞
m=−∞ f̃( s+m

h ).
Similarly if f is defined on Tl and φ[n] = f(nl

N ) is obtained by sampling then

φ̃[n] =
∞∑

m=−∞
f̃ [n+mN ]. (B.16)

Thus we see that sampling in x-space causes periodization in Fourier space.

Now consider the periodization of a function f(x) with x ∈ R to give the l-
periodic function g(x) ,

∑∞
m=−∞ f(x−ml). Let g̃[k] be the Fourier coefficients

of g(x). We obtain

g̃[k] =
1
l

∫ l

0

g(x)e−2πikx/l dx =
1
l

∫ l

0

∞∑
m=−∞

f(x−ml)e−2πikx/l dx (B.17)

=
1
l

∫ ∞

−∞
f(x)e−2πikx/l dx =

1
l
f̃
(k
l

)
, (B.18)

assuming that f(x) is sufficiently well-behaved that the summation and inte-
gration operations can be exchanged. A similar relationship can be obtained
for the periodization of a function defined on Z. Thus we see that periodization
in x-space gives rise to sampling in Fourier space.
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B.2 Continuous-time Gaussian Markov Processes

We first consider continuous-time Gaussian Markov processes on the real line,
and then relate the covariance function obtained to that for the stationary
solution of the SDE on the circle. Our treatment of continuous-time GMPs on
R follows Papoulis [1991, ch. 10].

B.2.1 Continuous-time GMPs on R

We wish to find the power spectrum and covariance function for the stationary
process corresponding to the SDE given by eq. (B.2). Recall that the covariance
function of a stationary process k(t) and the power spectrum S(s) form a Fourier
transform pair.

The Fourier transform of the stochastic process X(t) is a stochastic process
X̃(s) given by

X̃(s) =
∫ ∞

−∞
X(t)e−2πist dt, X(t) =

∫ ∞

−∞
X̃(s)e2πist ds, (B.19)

where the integrals are interpreted as a mean-square limit. Let ∗ denote complex
conjugation and 〈. . .〉 denote expectation with respect to the stochastic process.
Then for a stationary Gaussian process we have

〈X̃(s1)X̃∗(s2)〉 =
∫ ∞

−∞

∫ ∞

−∞
〈X(t)X∗(t′)〉e−2πis1te2πis2t′ dt dt′ (B.20)

=
∫ ∞

−∞
dt′e−2πi(s1−s2)t

′
∫ ∞

−∞
dτk(τ)e−2πis1τ (B.21)

= S(s1)δ(s1 − s2), (B.22)

using the change of variables τ = t − t′ and the integral representation of
the delta function

∫
e−2πistdt = δ(s). This shows that X̃(s1) and X̃(s2) are

uncorrelated for s1 6= s2, i.e. that the Fourier basis are eigenfunctions of the
differential operator. Also from eq. (B.19) we obtain

X(k)(t) =
∫ ∞

−∞
(2πis)kX̃(s)e2πist ds. (B.23)

Now if we Fourier transform eq. (B.2) we obtain

p∑
k=0

ak(2πis)kX̃(s) = b0Z̃(s), (B.24)

where Z̃(s) denotes the Fourier transform of the white noise. Taking the product
of equation B.24 with its complex conjugate and taking expectations we obtain[ p∑

k=0

ak(2πis1)k

][ p∑
k=0

ak(−2πis2)k

]
〈X̃(s1)X̃∗(s2)〉 = b20〈Z̃(s1)Z̃∗(s2)〉.

(B.25)
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Let A(z) =
∑p

k=0 akz
k. Then using eq. (B.22) and the fact that the power

spectrum of white noise is 1, we obtain

SR(s) =
b20

|A(2πis)|2
. (B.26)

Note that the denominator is a polynomial of order p in s2. The relationship
of stationary solutions of pth-order SDEs to rational spectral densities can be
traced back at least as far as Doob [1944].

Above we have assumed that the process is stationary. However, this de-
pends on the coefficients a0, . . . , ap. To analyze this issue we assume a solution
of the form Xt ∝ eλt when the driving term b0 = 0. This leads to the condition
for stationarity that the roots of the polynomial

∑p
k=0 akλ

k must lie in the left
half plane [Arató, 1982, p. 127].

Example: AR(1) process. In this case we have the SDEAR(1) process

X ′(t) + a0X(t) = b0Z(t), (B.27)

where a0 > 0 for stationarity. This gives rise to the power spectrum

S(s) =
b20

(2πis+ a0)(−2πis+ a0)
=

b20
(2πs)2 + a2

0

. (B.28)

Taking the Fourier transform we obtain

k(t) =
b20
2a0

e−a0|t|. (B.29)

This process is known as the Ornstein-Uhlenbeck (OU) process [Uhlenbeck and
Ornstein, 1930] and was introduced as a mathematical model of the velocity of
a particle undergoing Brownian motion. It can be shown that the OU process
is the unique stationary first-order Gaussian Markov process.

Example: AR(p) process. In general the covariance transform correspondingAR(p) process

to the power spectrum S(s) = ([
∑p

k=0 ak(2πis)k][
∑p

k=0 ak(−2πis)k])−1 can be
quite complicated. For example, Papoulis [1991, p. 326] gives three forms of
the covariance function for the AR(2) process depending on whether a2

1−4a0 is
greater than, equal to or less than 0. However, if the coefficients a0, a1, . . . , ap

are chosen in a particular way then one can obtain

S(s) =
1

(4π2s2 + α2)p
(B.30)

for some α. It can be shown [Stein, 1999, p. 31] that the corresponding covari-
ance function is of the form

∑p−1
k=0 βk|t|ke−α|t| for some coefficients β0, . . . , βp−1.

For p = 1 we have already seen that k(t) = 1
2αe

−α|t| for the OU process. For
p = 2 we obtain k(t) = 1

4α3 e
−α|t|(1+α|t|). These are special cases of the Matérn

class of covariance functions described in section 4.2.1.
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Example: Wiener process. Although our derivations have focussed on stationary Wiener process

Gaussian Markov processes, there are also several important non-stationary
processes. One of the most important is the Wiener process that satisfies the
SDE X ′(t) = Z(t) for t ≥ 0 with the initial condition X(0) = 0. This process
has covariance function k(t, s) = min(t, s). An interesting variant of the Wiener
process known as the Brownian bridge (or tied-down Wiener process) is obtained
by conditioning on the Wiener process passing through X(1) = 0. This has
covariance k(t, s) = min(t, s) − st for 0 ≤ s, t ≤ 1. See e.g. Grimmett and
Stirzaker [1992] for further information on these processes.

Markov processes derived from SDEs of order p are p−1 times MS differen-
tiable. This is easy to see heuristically from eq. (B.2); given that a process gets
rougher the more times it is differentiated, eq. (B.2) tells us that X(p)(t) is like
the white noise process, i.e. not MS continuous. So, for example, the OU process
(and also the Wiener process) are MS continuous but not MS differentiable.

B.2.2 The Solution of the Corresponding SDE on the Cir-
cle

The analogous analysis to that on the real line is carried out on Tl using

X(t) =
∞∑

n=−∞
X̃[n]e2πint/l, X̃[n] =

1
l

∫ l

0

X(t)e−2πint/ldt. (B.31)

As X(t) is assumed stationary we obtain an analogous result to eq. (B.22),
i.e. that the Fourier coefficients are independent

〈X̃[m]X̃∗[n]〉 =
{
S[n] if m = n
0 otherwise. (B.32)

Similarly, the covariance function on the cirle is given by k(t−s) = 〈X(t)X∗(s)〉 =∑∞
n=−∞ S[n]e2πin(t−s)/l. Let ωl = 2π/l. Then plugging in the expression

X(k)(t) =
∑∞

n=−∞(inωl)kX̃[n]einωlt into the SDE eq. (B.2) and equating terms
in [n] we obtain

p∑
k=0

ak(inωl)kX̃[n] = b0Z̃[n]. (B.33)

As in the real-line case we form the product of equation B.33 with its complex
conjugate and take expectations to give

ST[n] =
b20

|A(inωl)|2
. (B.34)

Note that ST[n] is equal to SR
(

n
l

)
, i.e. that it is a sampling of SR at intervals

1/l, where SR(s) is the power spectrum of the continuous process on the real
line given in equation B.26. Let kT(h) denote the covariance function on the
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circle and kR(h) denote the covariance function on the real line for the SDE.
Then using eq. (B.15) we find that

kT(t) =
∞∑

m=−∞
kR(t−ml). (B.35)

Example: 1st-order SDE. On R for the OU process we have kR(t) = b20
2a0

e−a0|t|.1st order SDE

By summing the series (two geometric progressions) we obtain

kT(t) =
b20

2a0(1− e−a0l)

(
e−a0|t| + e−a0(l−|t|)

)
=

b20
2a0

cosh[a0( l
2 − |t|)]

sinh(a0l
2 )

(B.36)

for −l ≤ t ≤ l. Eq. (B.36) is also given (up to scaling factors) in Grenander
et al. [1991, eq. 2.15], where it is obtained by a limiting argument from the
discrete-time GMP on Pn, see section B.3.2.

B.3 Discrete-time Gaussian Markov Processes

We first consider discrete-time Gaussian Markov processes on Z, and then re-
late the covariance function obtained to that of the stationary solution of the
difference equation on PN . Chatfield [1989] and Diggle [1990] provide good
coverage of discrete-time ARMA models on Z.

B.3.1 Discrete-time GMPs on Z

Assuming that the process is stationary the covariance function k[i] denotes
〈XtXt+i〉 ∀t ∈ Z. (Note that because of stationarity k[i] = k[−i].)

We first use a Fourier approach to derive the power spectrum and hence the
covariance function of the AR(p) process. Defining a0 = −1, we can rewrite
eq. (B.1) as

∑p
k=0 akXt−k + b0Zt = 0. The Fourier pair for X[t] is

X[t] =
∫ l

0

X̃(s)e2πist/l ds, X̃(s) =
1
l

∞∑
t=−∞

X[t]e−2πist/l. (B.37)

Plugging this into
∑p

k=0 akXt−k + b0Zt = 0 we obtain

X̃(s)
( p∑

k=0

ake
−iωlsk

)
+ b0Z̃(s) = 0, (B.38)

where ωl = 2π/l. As above, taking the product of eq. (B.38) with its complex
conjugate and taking expectations we obtain

SZ(s) =
b20

|A(eiωls)|2
. (B.39)
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Above we have assumed that the process is stationary. However, this de-
pends on the coefficients a0, . . . , ap. To analyze this issue we assume a solution
of the form Xt ∝ zt when the driving term b0 = 0. This leads to the condition
for stationarity that the roots of the polynomial

∑p
k=0 akz

p−k must lie inside
the unit circle. See Hannan [1970, Theorem 5, p. 19] for further details.

As well as deriving the covariance function from the Fourier transform of
the power spectrum it can also be obtained by solving a set of linear equations.
Our first observation is that Xs is independent of Zt for s < t. Multiplying
equation B.1 through by Zt and taking expectations, we obtain 〈XtZt〉 = b0
and 〈Xt−iZt〉 = 0 for i > 0. By multiplying equation B.1 through by Xt−j for
j = 0, 1, . . . and taking expectations we obtain the Yule-Walker equations Yule-Walker equations

k[0] =
p∑

i=1

aik[i] + b20 (B.40)

k[j] =
p∑

i=1

aik[j − i] ∀j > 0. (B.41)

The first p+1 of these equations form a linear system that can be used to solve
for k[0], . . . , k[p] in terms of b0 and a1, . . . , ap, and eq. (B.41) can be used to
obtain k[j] for j > p recursively.

Example: AR(1) process. The simplest example of an AR process is the AR(1) AR(1) process

process defined as Xt = a1Xt−1 + b0Zt. This gives rise to the Yule-Walker
equations

k[0]− a1k[1] = b20, and k[1]− a1k[0] = 0. (B.42)

The linear system for k[0], k[1] can easily be solved to give k[j] = a
|j|
1 σ2

X , where
σ2

X = b20/(1− a2
1) is the variance of the process. Notice that for the process to

be stationary we require |a1| < 1. The corresponding power spectrum obtained
from equation B.39 is

S(s) =
b20

1− 2a1 cos(ωls) + a2
1

. (B.43)

Similarly to the continuous case, the covariance function for the discrete-time
AR(2) process has three different forms depending on a2

1 + 4a2. These are
described in Diggle [1990, Example 3.6].

B.3.2 The Solution of the Corresponding Difference Equa-
tion on PN

We now consider variables X = X0, X1, . . . , XN−1 arranged around the circle
with N ≥ p. By appropriately modifying eq. (B.1) we obtain

Xt =
p∑

k=1

akXmod(t−k,N) + b0Zt. (B.44)
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The Zt’s are i.i.d. and ∼ N (0, 1). Thus Z = Z0, Z1, . . . , ZN−1 has density
p(Z) ∝ exp− 1

2

∑N−1
t=0 Z2

t . Equation (B.44) shows that X and Z are related by
a linear transformation and thus

p(X) ∝ exp
(
− 1

2b20

N−1∑
t=0

(
Xt −

p∑
k=1

akXmod(t−k,N)

)2)
. (B.45)

This is an N -dimensional multivariate Gaussian. For an AR(p) process the
inverse covariance matrix has a circulant structure [Davis, 1979] consisting of
a diagonal band (2p + 1) entries wide and appropriate circulant entries in the
corners. Thus p(Xt|X\Xt) = p(Xt|Xmod(t−1,N), . . . , Xmod(t−p,N), Xmod(t+1,N),
. . . , Xmod(t+p,N)), which Geman and Geman [1984] call the “two-sided” Markov
property. Notice that it is the zeros in the inverse covariance matrix that
indicate the conditional independence structure; see also section B.5.

The properties of eq. (B.44) have been studied by a number of authors,
e.g. Whittle [1963] (under the name of circulant processes), Kashyap and Chel-
lappa [1981] (under the name of circular autoregressive models) and Grenander
et al. [1991] (as cyclic Markov process).

As above, we define the Fourier transform pair

X[n] =
N−1∑
m=0

X̃[m]e2πinm/N , X̃[m] =
1
N

N−1∑
n=0

X[n]e−2πinm/N . (B.46)

By similar arguments to those above we obtain

p∑
k=0

akX̃[m](e2πim/N )k + b0Z̃[m] = 0, (B.47)

where a0 = −1, and thus

SP[m] =
b20

|A(e2πim/N )|2
. (B.48)

As in the continuous-time case, we see that SP[m] is obtained by sampling
the power spectrum of the corresponding process on the line, so that SP[m] =
SZ
(

ml
N

)
. Thus using eq. (B.16) we have

kP[n] =
∞∑

m=−∞
kZ[n+mN ]. (B.49)

Example: AR(1) process. For this process Xt = a1Xmod(t−1,n) + b0Zt, theAR(1) process

diagonal entries in the inverse covariance are (1 + a2
1)/b

2
0 and the non-zero off-

diagonal entries are −a1/b
2
0.

By summing the covariance function kZ[n] = σ2
Xa

|n|
1 we obtain

kP[n] =
σ2

X

(1− aN
1 )

(a|n|1 + a
|N−n|
1 ) n = 0, . . . , N − 1. (B.50)
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We now illustrate this result for N = 3. In this case the covariance matrix has
diagonal entries of σ2

X

(1−a3
1)

(1 + a3
1) and off-diagonal entries of σ2

X

(1−a3
1)

(a1 + a2
1).

The inverse covariance matrix has the structure described above. Multiplying
these two matrices together we do indeed obtain the identity matrix.

B.4 The Relationship Between Discrete-time and
Sampled Continuous-time GMPs

We now consider the relationship between continuous-time and discrete-time
GMPs. In particular we ask the question, is a regular sampling of a continuous-
time AR(p) process a discrete-time AR(p) process? It turns out that the answer
will, in general, be negative. First we define a generalization of AR processes
known as autoregressive moving-average (ARMA) processes.

ARMA processes The AR(p) process defined above is a special case of the
more general ARMA(p, q) process which is defined as

Xt =
p∑

i=1

aiXt−i +
q∑

j=0

bjZt−j . (B.51)

Observe that the AR(p) process is in fact also an ARMA(p, 0) process. A
spectral analysis of equation B.51 similar to that performed in section B.3.1
gives

S(s) =
|B(eiωls)|2

|A(eiωls)|2
, (B.52)

where B(z) =
∑q

j=0 bjz
j . In continuous time a process with a rational spectral

density of the form

S(s) =
|B(2πis)|2

|A(2πis)|2
(B.53)

is known as a ARMA(p, q) process. For this to define a valid covariance function
we require q < p as k(0) =

∫
S(s)ds <∞.

Discrete-time observation of a continuous-time process Let X(t) be
a continuous-time process having covariance function k(t) and power spectrum
S(s). Let Xh be the discrete-time process obtained by sampling X(t) at interval
h, so that Xh[n] = X(nh) for n ∈ Z. Clearly the covariance function of this
process is given by kh[n] = k(nh). By eq. (B.15) this means that

Sh(s) =
∞∑

m=−∞
S(s+

m

h
) (B.54)

where Sh(s) is defined using l = 1/h.
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Theorem B.1 Let X be a continuous-time stationary Gaussian process and
Xh be the discretization of this process. If X is an ARMA process then Xh

is also an ARMA process. However, if X is an AR process then Xh is not
necessarily an AR process. �

The proof is given in Ihara [1993, Theorem 2.7.1]. It is easy to see using the
covariance functions given in sections B.2.1 and B.3.1 that the discretization
of a continuous-time AR(1) process is indeed a discrete-time AR(1) process.
However, Ihara shows that, in general, the discretization of a continuous-time
AR(2) process is not a discrete-time AR(2) process.

B.5 Markov Processes in Higher Dimensions

We have concentrated above on the case where t is one-dimensional. In higher
dimensions it is interesting to ask how the Markov property might be general-
ized. Let ∂S be an infinitely differentiable closed surface separating RD into a
bounded part S− and an unbounded part S+. Loosely speaking2 a random field
X(t) is said to be quasi-Markovian if X(t) for t ∈ S− and X(u) for u ∈ S+ are
independent given X(s) for s ∈ ∂S. Wong [1971] showed that the only isotropic
quasi-Markov Gaussian field with a continuous covariance function is the degen-
erate case X(t) = X(0), where X(0) is a Gaussian variate. However, if instead
of conditioning on the values that the field takes on in ∂S, one conditions on
a somewhat larger set, then Gaussian random fields with non-trivial Markov-
type structure can be obtained. For example, random fields with an inverse
power spectrum of the form

∑
k ak1,...,kD

sk1
1 · · · s

kd

d with k>1 =
∑D

j=1 kj ≤ 2p
and C(s · s)p ≤

∣∣∑
k>1=2p ak1,...,kD

sk1
1 · · · s

kd

D

∣∣ for some C > 0 are said to be
pseudo-Markovian of order p. For example, the D-dimensional tensor-product
of the OU process k(t) =

∏D
i=1 e

−αi|ti| is pseudo-Markovian of order D. For
further discussion of Markov properties of random fields see the Appendix in
Adler [1981].

If instead of RD we wish to define a Markov random field (MRF) on a graph-
ical structure (for example the lattice ZD) things become more straightforward.
We follow the presentation in Jordan [2005]. Let G = (X,E) be a graph where
X is a set of nodes that are in one-to-one correspondence with a set of ran-
dom variables, and E be the set of undirected edges of the graph. Let C be
the set of all maximal cliques of G. A potential function ψC(xC) is a function
on the possible realizations xC of the maximal clique XC . Potential functions
are assumed to be (strictly) positive, real-valued functions. The probability
distribution p(x) corresponding to the Markov random field is given by

p(x) =
1
Z

∏
C∈C

ψC(xC), (B.55)

where Z is a normalization factor (known in statistical physics as the partition
function) obtained by summing/integrating

∏
C∈C ψC(xC) over all possible as-

2For a precise formulation of this definition involving σ-fields see Adler [1981, p. 256].
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signments of values to the nodes X. Under this definition it is easy to show
that a local Markov property holds, i.e. that for any variable x the conditional
distribution of x given all other variables in X depends only on those variables
that are neighbours of x. A useful reference on Markov random fields is Winkler
[1995].

A simple example of a Gaussian Markov random field has the form

p(x) ∝ exp
(
− α1

∑
i

x2
i − α2

∑
i,j:j∈N(i)

(xi − xj)2
)
, (B.56)

where N(i) denotes the set of neighbours of node xi and α1, α2 > 0. On Z2

one might choose a four-connected neighbourhood, i.e. those nodes to the north,
south, east and west of a given node.
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