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The actual science of logic is conversant at present only with things either
certain, impossible, or entirely doubtful, none of which (fortunately) we have to
reason on. Therefore the true logic for this world is the calculus of Probabilities,
which takes account of the magnitude of the probability which is, or ought to
be, in a reasonable man’s mind.

— James Clerk Maxwell [1850]
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Series Foreword

The goal of building systems that can adapt to their environments and learn
from their experience has attracted researchers from many fields, including com-
puter science, engineering, mathematics, physics, neuroscience, and cognitive
science. Out of this research has come a wide variety of learning techniques that
have the potential to transform many scientific and industrial fields. Recently,
several research communities have converged on a common set of issues sur-
rounding supervised, unsupervised, and reinforcement learning problems. The
MIT Press series on Adaptive Computation and Machine Learning seeks to
unify the many diverse strands of machine learning research and to foster high
quality research and innovative applications.

One of the most active directions in machine learning has been the de-
velopment of practical Bayesian methods for challenging learning problems.
Gaussian Processes for Machine Learning presents one of the most important
Bayesian machine learning approaches based on a particularly effective method
for placing a prior distribution over the space of functions. Carl Edward Ras-
mussen and Chris Williams are two of the pioneers in this area, and their book
describes the mathematical foundations and practical application of Gaussian
processes in regression and classification tasks. They also show how Gaussian
processes can be interpreted as a Bayesian version of the well-known support
vector machine methods. Students and researchers who study this book will be
able to apply Gaussian process methods in creative ways to solve a wide range
of problems in science and engineering.

Thomas Dietterich
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Preface

Over the last decade there has been an explosion of work in the “kernel ma- kernel machines

chines” area of machine learning. Probably the best known example of this is
work on support vector machines, but during this period there has also been
much activity concerning the application of Gaussian process models to ma-
chine learning tasks. The goal of this book is to provide a systematic and uni-
fied treatment of this area. Gaussian processes provide a principled, practical,
probabilistic approach to learning in kernel machines. This gives advantages
with respect to the interpretation of model predictions and provides a well-
founded framework for learning and model selection. Theoretical and practical
developments of over the last decade have made Gaussian processes a serious
competitor for real supervised learning applications.

Roughly speaking a stochastic process is a generalization of a probability Gaussian process

distribution (which describes a finite-dimensional random variable) to func-
tions. By focussing on processes which are Gaussian, it turns out that the
computations required for inference and learning become relatively easy. Thus,
the supervised learning problems in machine learning which can be thought of
as learning a function from examples can be cast directly into the Gaussian
process framework.

Our interest in Gaussian process (GP) models in the context of machine Gaussian processes
in machine learninglearning was aroused in 1994, while we were both graduate students in Geoff

Hinton’s Neural Networks lab at the University of Toronto. This was a time
when the field of neural networks was becoming mature and the many con-
nections to statistical physics, probabilistic models and statistics became well
known, and the first kernel-based learning algorithms were becoming popular.
In retrospect it is clear that the time was ripe for the application of Gaussian
processes to machine learning problems.

Many researchers were realizing that neural networks were not so easy to neural networks

apply in practice, due to the many decisions which needed to be made: what
architecture, what activation functions, what learning rate, etc., and the lack of
a principled framework to answer these questions. The probabilistic framework
was pursued using approximations by MacKay [1992b] and using Markov chain
Monte Carlo (MCMC) methods by Neal [1996]. Neal was also a graduate stu-
dent in the same lab, and in his thesis he sought to demonstrate that using the
Bayesian formalism, one does not necessarily have problems with “overfitting”
when the models get large, and one should pursue the limit of large models.
While his own work was focused on sophisticated Markov chain methods for
inference in large finite networks, he did point out that some of his networks
became Gaussian processes in the limit of infinite size, and “there may be sim- large neural networks

≡ Gaussian processespler ways to do inference in this case.”

It is perhaps interesting to mention a slightly wider historical perspective.
The main reason why neural networks became popular was that they allowed
the use of adaptive basis functions, as opposed to the well known linear models. adaptive basis functions

The adaptive basis functions, or hidden units, could “learn” hidden features
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xiv Preface

useful for the modelling problem at hand. However, this adaptivity came at the
cost of a lot of practical problems. Later, with the advancement of the “kernel
era”, it was realized that the limitation of fixed basis functions is not a bigmany fixed basis

functions restriction if only one has enough of them, i.e. typically infinitely many, and
one is careful to control problems of overfitting by using priors or regularization.
The resulting models are much easier to handle than the adaptive basis function
models, but have similar expressive power.

Thus, one could claim that (as far a machine learning is concerned) the
adaptive basis functions were merely a decade-long digression, and we are now
back to where we came from. This view is perhaps reasonable if we think of
models for solving practical learning problems, although MacKay [2003, ch. 45],
for example, raises concerns by asking “did we throw out the baby with the bath
water?”, as the kernel view does not give us any hidden representations, tellinguseful representations

us what the useful features are for solving a particular problem. As we will
argue in the book, one answer may be to learn more sophisticated covariance
functions, and the “hidden” properties of the problem are to be found here.
An important area of future developments for GP models is the use of more
expressive covariance functions.

Supervised learning problems have been studied for more than a centurysupervised learning
in statistics in statistics, and a large body of well-established theory has been developed.

More recently, with the advance of affordable, fast computation, the machine
learning community has addressed increasingly large and complex problems.

Much of the basic theory and many algorithms are shared between thestatistics and
machine learning statistics and machine learning community. The primary differences are perhaps

the types of the problems attacked, and the goal of learning. At the risk of
oversimplification, one could say that in statistics a prime focus is often indata and models

understanding the data and relationships in terms of models giving approximate
summaries such as linear relations or independencies. In contrast, the goals in
machine learning are primarily to make predictions as accurately as possible andalgorithms and

predictions to understand the behaviour of learning algorithms. These differing objectives
have led to different developments in the two fields: for example, neural network
algorithms have been used extensively as black-box function approximators in
machine learning, but to many statisticians they are less than satisfactory,
because of the difficulties in interpreting such models.

Gaussian process models in some sense bring together work in the two com-bridging the gap

munities. As we will see, Gaussian processes are mathematically equivalent to
many well known models, including Bayesian linear models, spline models, large
neural networks (under suitable conditions), and are closely related to others,
such as support vector machines. Under the Gaussian process viewpoint, the
models may be easier to handle and interpret than their conventional coun-
terparts, such as e.g. neural networks. In the statistics community Gaussian
processes have also been discussed many times, although it would probably be
excessive to claim that their use is widespread except for certain specific appli-
cations such as spatial models in meteorology and geology, and the analysis of
computer experiments. A rich theory also exists for Gaussian process models
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in the time series analysis literature; some pointers to this literature are given
in Appendix B.

The book is primarily intended for graduate students and researchers in intended audience

machine learning at departments of Computer Science, Statistics and Applied
Mathematics. As prerequisites we require a good basic grounding in calculus,
linear algebra and probability theory as would be obtained by graduates in nu-
merate disciplines such as electrical engineering, physics and computer science.
For preparation in calculus and linear algebra any good university-level text-
book on mathematics for physics or engineering such as Arfken [1985] would
be fine. For probability theory some familiarity with multivariate distributions
(especially the Gaussian) and conditional probability is required. Some back-
ground mathematical material is also provided in Appendix A.

The main focus of the book is to present clearly and concisely an overview focus

of the main ideas of Gaussian processes in a machine learning context. We have
also covered a wide range of connections to existing models in the literature,
and cover approximate inference for faster practical algorithms. We have pre-
sented detailed algorithms for many methods to aid the practitioner. Software
implementations are available from the website for the book, see Appendix C.
We have also included a small set of exercises in each chapter; we hope these
will help in gaining a deeper understanding of the material.

In order limit the size of the volume, we have had to omit some topics, such scope

as, for example, Markov chain Monte Carlo methods for inference. One of the
most difficult things to decide when writing a book is what sections not to write.
Within sections, we have often chosen to describe one algorithm in particular
in depth, and mention related work only in passing. Although this causes the
omission of some material, we feel it is the best approach for a monograph, and
hope that the reader will gain a general understanding so as to be able to push
further into the growing literature of GP models.

The book has a natural split into two parts, with the chapters up to and book organization

including chapter 5 covering core material, and the remaining sections covering
the connections to other methods, fast approximations, and more specialized
properties. Some sections are marked by an asterisk. These sections may be ∗
omitted on a first reading, and are not pre-requisites for later (un-starred)
material.

We wish to express our considerable gratitude to the many people with acknowledgements

whom we have interacted during the writing of this book. In particular Moray
Allan, David Barber, Peter Bartlett, Miguel Carreira-Perpiñán, Marcus Gal-
lagher, Manfred Opper, Anton Schwaighofer, Matthias Seeger, Hanna Wallach,
Joe Whittaker, and Andrew Zisserman all read parts of the book and provided
valuable feedback. Dilan Görür, Malte Kuss, Iain Murray, Joaquin Quiñonero-
Candela, Leif Rasmussen and Sam Roweis were especially heroic and provided
comments on the whole manuscript. We thank Chris Bishop, Miguel Carreira-
Perpiñán, Nando de Freitas, Zoubin Ghahramani, Peter Grünwald, Mike Jor-
dan, John Kent, Radford Neal, Joaquin Quiñonero-Candela, Ryan Rifkin, Ste-
fan Schaal, Anton Schwaighofer, Matthias Seeger, Peter Sollich, Ingo Steinwart,
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Amos Storkey, Volker Tresp, Sethu Vijayakumar, Grace Wahba, Joe Whittaker
and Tong Zhang for valuable discussions on specific issues. We also thank Bob
Prior and the staff at MIT Press for their support during the writing of the
book. We thank the Gatsby Computational Neuroscience Unit (UCL) and Neil
Lawrence at the Department of Computer Science, University of Sheffield for
hosting our visits and kindly providing space for us to work, and the Depart-
ment of Computer Science at the University of Toronto for computer support.
Thanks to John and Fiona for their hospitality on numerous occasions. Some
of the diagrams in this book have been inspired by similar diagrams appearing
in published work, as follows: Figure 3.5, Schölkopf and Smola [2002]; Fig-
ure 5.2, MacKay [1992b]. CER gratefully acknowledges financial support from
the German Research Foundation (DFG). CKIW thanks the School of Infor-
matics, University of Edinburgh for granting him sabbatical leave for the period
October 2003-March 2004.

Finally, we reserve our deepest appreciation for our wives Agnes and Bar-
bara, and children Ezra, Kate, Miro and Ruth for their patience and under-
standing while the book was being written.

Despite our best efforts it is inevitable that some errors will make it througherrata

to the printed version of the book. Errata will be made available via the book’s
website at

http://www.GaussianProcess.org/gpml

We have found the joint writing of this book an excellent experience. Although
hard at times, we are confident that the end result is much better than either
one of us could have written alone.

Now, ten years after their first introduction into the machine learning com-looking ahead

munity, Gaussian processes are receiving growing attention. Although GPs
have been known for a long time in the statistics and geostatistics fields, and
their use can perhaps be traced back as far as the end of the 19th century, their
application to real problems is still in its early phases. This contrasts somewhat
the application of the non-probabilistic analogue of the GP, the support vec-
tor machine, which was taken up more quickly by practitioners. Perhaps this
has to do with the probabilistic mind-set needed to understand GPs, which is
not so generally appreciated. Perhaps it is due to the need for computational
short-cuts to implement inference for large datasets. Or it could be due to the
lack of a self-contained introduction to this exciting field—with this volume, we
hope to contribute to the momentum gained by Gaussian processes in machine
learning.

Carl Edward Rasmussen and Chris Williams
Tübingen and Edinburgh, summer 2005

Second printing: We thank Baback Moghaddam, Mikhail Parakhin, Leif Ras-
mussen, Benjamin Sobotta, Kevin S. Van Horn and Aki Vehtari for reporting
errors in the first printing which have now been corrected.
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Symbols and Notation

Matrices are capitalized and vectors are in bold type. We do not generally distinguish between proba-
bilities and probability densities. A subscript asterisk, such as in X∗, indicates reference to a test set
quantity. A superscript asterisk denotes complex conjugate.

Symbol Meaning

\ left matrix divide: A\b is the vector x which solves Ax = b
, an equality which acts as a definition
c= equality up to an additive constant
|K| determinant of K matrix
|y| Euclidean length of vector y, i.e.

(∑
i y

2
i

)1/2

〈f, g〉H RKHS inner product
‖f‖H RKHS norm
y> the transpose of vector y
∝ proportional to; e.g. p(x|y) ∝ f(x, y) means that p(x|y) is equal to f(x, y) times

a factor which is independent of x
∼ distributed according to; example: x ∼ N (µ, σ2)
∇ or ∇f partial derivatives (w.r.t. f)
∇∇ the (Hessian) matrix of second derivatives
0 or 0n vector of all 0’s (of length n)
1 or 1n vector of all 1’s (of length n)
C number of classes in a classification problem
cholesky(A) Cholesky decomposition: L is a lower triangular matrix such that LL> = A
cov(f∗) Gaussian process posterior covariance
D dimension of input space X
D data set: D = {(xi, yi)|i = 1, . . . , n}
diag(w) (vector argument) a diagonal matrix containing the elements of vector w
diag(W ) (matrix argument) a vector containing the diagonal elements of matrix W
δpq Kronecker delta, δpq = 1 iff p = q and 0 otherwise
E or Eq(x)[z(x)] expectation; expectation of z(x) when x ∼ q(x)
f(x) or f Gaussian process (or vector of) latent function values, f = (f(x1), . . . , f(xn))>

f∗ Gaussian process (posterior) prediction (random variable)
f̄∗ Gaussian process posterior mean
GP Gaussian process: f ∼ GP

(
m(x), k(x,x′)

)
, the function f is distributed as a

Gaussian process with mean function m(x) and covariance function k(x,x′)
h(x) or h(x) either fixed basis function (or set of basis functions) or weight function
H or H(X) set of basis functions evaluated at all training points
I or In the identity matrix (of size n)
Jν(z) Bessel function of the first kind
k(x,x′) covariance (or kernel) function evaluated at x and x′

K or K(X,X) n× n covariance (or Gram) matrix
K∗ n× n∗ matrix K(X,X∗), the covariance between training and test cases
k(x∗) or k∗ vector, short for K(X,x∗), when there is only a single test case
Kf or K covariance matrix for the (noise free) f values
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xviii Symbols and Notation

Symbol Meaning

Ky covariance matrix for the (noisy) y values; for independent homoscedastic noise,
Ky = Kf + σ2

nI
Kν(z) modified Bessel function
L(a, b) loss function, the loss of predicting b, when a is true; note argument order
log(z) natural logarithm (base e)
log2(z) logarithm to the base 2
` or `d characteristic length-scale (for input dimension d)
λ(z) logistic function, λ(z) = 1/

(
1 + exp(−z)

)
m(x) the mean function of a Gaussian process
µ a measure (see section A.7)
N (µ,Σ) or N (x|µ,Σ) (the variable x has a) Gaussian (Normal) distribution with mean vector µ and

covariance matrix Σ
N (x) short for unit Gaussian x ∼ N (0, I)
n and n∗ number of training (and test) cases
N dimension of feature space
NH number of hidden units in a neural network
N the natural numbers, the positive integers
O(·) big Oh; for functions f and g on N, we write f(n) = O(g(n)) if the ratio

f(n)/g(n) remains bounded as n→∞
O either matrix of all zeros or differential operator
y|x and p(y|x) conditional random variable y given x and its probability (density)
PN the regular n-polygon
φ(xi) or Φ(X) feature map of input xi (or input set X)
Φ(z) cumulative unit Gaussian: Φ(z) = (2π)−1/2

∫ z

−∞ exp(−t2/2)dt
π(x) the sigmoid of the latent value: π(x) = σ(f(x)) (stochastic if f(x) is stochastic)
π̂(x∗) MAP prediction: π evaluated at f̄(x∗).
π̄(x∗) mean prediction: expected value of π(x∗). Note, in general that π̂(x∗) 6= π̄(x∗)
R the real numbers
RL(f) or RL(c) the risk or expected loss for f , or classifier c (averaged w.r.t. inputs and outputs)
R̃L(l|x∗) expected loss for predicting l, averaged w.r.t. the model’s pred. distr. at x∗
Rc decision region for class c
S(s) power spectrum
σ(z) any sigmoid function, e.g. logistic λ(z), cumulative Gaussian Φ(z), etc.
σ2

f variance of the (noise free) signal
σ2

n noise variance
θ vector of hyperparameters (parameters of the covariance function)
tr(A) trace of (square) matrix A
Tl the circle with circumference l
V or Vq(x)[z(x)] variance; variance of z(x) when x ∼ q(x)
X input space and also the index set for the stochastic process
X D × n matrix of the training inputs {xi}ni=1: the design matrix
X∗ matrix of test inputs
xi the ith training input
xdi the dth coordinate of the ith training input xi

Z the integers . . . ,−2, −1, 0, 1, 2, . . .
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